Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis

Version 1 : Received: 8 April 2019 / Approved: 9 April 2019 / Online: 9 April 2019 (12:59:50 CEST)

A peer-reviewed article of this Preprint also exists.

Zhang, P.; Jin, T.; Kumar Sahu, S.; Xu, J.; Shi, Q.; Liu, H.; Wang, Y. The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis. Molecules 2019, 24, 1411. Zhang, P.; Jin, T.; Kumar Sahu, S.; Xu, J.; Shi, Q.; Liu, H.; Wang, Y. The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis. Molecules 2019, 24, 1411.

Abstract

Bacterial indole-3-acetic acid (IAA), an effector molecule in microbial physiology, plays an important role in plant growth-promotion. Here, we comprehensively analyzed about 7282 prokaryotic genomes representing diverse bacterial phyla, combined with root-associated metagenomic data to unravel the distribution of tryptophan-dependent IAA synthesis pathways and to quantify the IAA synthesis-related genes in the plant root environments. We found that 82.2% of the analyzed bacterial genomes were potentially capable of synthesizing IAA from tryptophan (Trp) or intermediates. Interestingly, several phylogenetically diverse bacteria showed a preferential tendency to utilize different pathways and tryptamine and indole-3-pyruvate pathways are most prevalent in bacteria. About 45.3% of the studied genomes displayed multiple coexisting pathways, constituting complex IAA synthesis systems. Furthermore, root-associated metagenomic analyses revealed that rhizobacteria mainly synthesize IAA via IAM and tryptamine (TMP) pathways and might possess stronger IAA synthesis abilities than bacteria colonizing other environments. The obtained results refurbished our understanding of bacterial IAA synthesis pathways and provided a faster and less labor-intensive alternative to physiological screening based on genome collections. The better understanding of IAA synthesis among bacterial communities could maximize the utilization of bacterial IAA to augment the crop growth and physiological function.

Keywords

Indole-3-acetic acid; Bacteria; Pathways; Genomes; Metagenomes

Subject

Biology and Life Sciences, Immunology and Microbiology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.