Preprint
Article

This version is not peer-reviewed.

Interpretation of Near-Infrared Spectroscopy (NIRS) Signals in Skeletal Muscle

A peer-reviewed article of this preprint also exists.

Submitted:

07 April 2019

Posted:

08 April 2019

You are already at the latest version

Abstract
NIRS uses the relative absorption of light at 850nm and 760nm, to determine skeletal muscle oxygen saturation. Previous studies have used the ratio of both signals to report muscle oxygen saturation. Purpose: To evaluate the different approaches used to represent muscle oxygen saturation, and to evaluate the pulsations of the O2heme and Heme signal. Method: Twelve participants, ages 20-29years were tested on the forearm flexor muscles using continuous wave NIRS at rest. Measurements were taken during 2-3mins rest, during physiological calibration (5-minuts Ischemia) and during reperfusion. Results: There was a significant difference in pulse size between O2heme and Heme signal at the three locations (p < 0.05). Resting oxygen saturation was 58.8+9.2%, 69.6+3.9%, and 89.2+6.9% when calibrated using O2heme, TSI, and Heme, respectively. Conclusion: The difference in magnitude of O2heme and Heme pulse with each heartbeat might suggest different anatomical locations of these signals, which propose calibrating with just one of the signals instead of the ratio of both. Calculations of physiological calibration must account for increased blood volume in the tissue, because of the changes in blood volume which appear to be primarily from the O2heme signal. Resting oxygen levels calibrated with Heme agrees with theoretical oxygen saturation.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated