Preprint
Article

3-D Segmentation of Lung Nodules Using Hybrid Levelsets

This version is not peer-reviewed.

Submitted:

04 April 2019

Posted:

05 April 2019

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Lung nodule segmentation in CT images and its subsequent volume analysis can help determinethe malignancy status of a lung nodule. While several efficient segmentation schemes have beenproposed, only a few studies evaluated the segmentation’s performance for large nodules. In thisresearch, we contribute a semi-automatic system which is capable of performing robust 3-D segmen-tations on both small and large nodules with good accuracy. The target CT volume is de-noisedwith an anisotropic diffusion filter and a region of interest is selected around the target nodule ona reference slice. The proposed model performs nodule segmentation by incorporating a mean in-tensity based threshold in Geodesic Active Contour model in level sets. We also devise an adaptivetechnique using image intensity histogram to estimate the desired mean intensity of the nodule.The proposed system is validated on both lung nodules and phantoms collected from publicly avail-able diverse databases. Quantitative and visual comparative analysis of the proposed work withthe Chan-Vese algorithm and statistic active contour model of 3D Slicer platform is also presented.The resulting mean spatial overlap between segmented nodules and reference nodules is 0.855, themean volume bias is 0.10±0.2 ml and the algorithm repeatability is 0.060 ml. The achieved resultssuggest that the proposed method can be used for volume estimations of small as well as large-sizednodules.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

3427

Views

301

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated