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Abstract

Lung nodule segmentation in CT images and its subsequent volume analysis can help determine

the malignancy status of a lung nodule. While several efficient segmentation schemes have been

proposed, only a few studies evaluated the segmentation’s performance for large nodules. In this

research, we contribute a semi-automatic system which is capable of performing robust 3-D segmen-

tations on both small and large nodules with good accuracy. The target CT volume is de-noised

with an anisotropic diffusion filter and a region of interest is selected around the target nodule on

a reference slice. The proposed model performs nodule segmentation by incorporating a mean in-

tensity based threshold in Geodesic Active Contour model in level sets. We also devise an adaptive

technique using image intensity histogram to estimate the desired mean intensity of the nodule.

The proposed system is validated on both lung nodules and phantoms collected from publicly avail-

able diverse databases. Quantitative and visual comparative analysis of the proposed work with

the Chan-Vese algorithm and statistic active contour model of 3D Slicer platform is also presented.

The resulting mean spatial overlap between segmented nodules and reference nodules is 0.855, the

mean volume bias is 0.10± 0.2 ml and the algorithm repeatability is 0.060 ml. The achieved results

suggest that the proposed method can be used for volume estimations of small as well as large-sized

nodules.
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1. Introduction

Lung cancer is a leading cause of cancer-related deaths among males and females worldwide [1].

It often appears as opaque lesions in the lungs, referred to as lung nodules. The symptoms of lung
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cancer typically manifest at an advanced stage, which makes the treatment least likely to work. A

5- year survival rate for detection in the initial stages is approximately 54 % whereas, for advanced

stages it is only 4 %[2]. Thus, early detection and treatment of lung nodules can help increase the

life expectancy of lung cancer patients.

Compelling studies by Field et al.[3] and Nanda et al.[4] have shown that Computed tomography

(CT) is more sensitive towards nodule detection than the chest radiography, and is frequently used

for detection of lung cancer. Currently, Response Evaluation Criteria In Solid Tumors (RECIST)

is a vastly adopted protocol which uses the maximum diameter of the tumor as a key parameter to

measure the nodule response. While RECIST is simple to follow, there is variability in intraobserver

and interobserver RECIST measures due to a different interpretation of manually measured data.

The problem with the RECIST protocol has been effectively addressed with volume estimation,

which takes into account the overall changes in nodules [5]. The nodule volume is measured after

its segmentation, hence correct nodule segmentation plays a crucial role in volumetric assessment

and diagnostic tests.

In this article, we present a robust and accurate 3-D segmentation scheme for lung nodules of

varying sizes in CT images to aid the clinicians for correct volumetric assessment. The segmentation

process is initialized with a 3-D region of interest (ROI) drawn around the target nodule on a

reference CT slice. Followed by the initialization, ROI is denoised using an anisotropic diffusion

filter. The location of the nodule is identified by applying Geodesic Active Contour(GAC) model,

a parametric deformable model to the denoised ROI. In order to prevent the boundary leakage

of the evolved contour, a mean gray-value threshold value is introduced within the GAC model.

The proposed model executes in level sets. Consequently, an active contour is evolved around

the nodule leading to accurate segmentation. Moreover, an adaptive technique to estimate the

desired mean intensity of the nodule is also devised. This process enables robust segmentation of

nodules irrespective of the sizes. Further, any anatomical structure within the region of interest

is automatically detected and removed. After the completion of the segmentation process, nodule

volume is computed.

The presented method is evaluated by segmenting 72 nodules from 50 CT volumes obtained

from diverse databases and is further assessed in terms of bias, spatial overlap, and repeatability. A

qualitative and quantitative comparison of the presented work with the Chan-Vese algorithm and

statistic active contour model of 3D Slicer platform is also shown.

Rest of the paper is organized as follows. In section 2, related work and contribution of the
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proposed system are discussed. The proposed hybrid segmentation system is explained in section

3. Experiments’ results and discussion on the system’s performance are presented in section 4 and

section 5 respectively. We draw the conclusion of our proposed research work in section 6.

2. Related Work

Among contemporary 3-D segmentation models, deformable models have been actively re-

searched for medical image segmentation [6]. These models evolve surfaces within an image whose

movement is influenced by internal and external forces. The internal forces are applied from within

the curve, while the external forces are calculated from the image region data. Deformable models

are often referred to as active contours, snakes, balloons and deformable surfaces. For computa-

tional convenience, these models have commonly been executed within the level set framework.

In the literature surveyed, deformable models are also investigated for lung nodules segmentation.

Kawata et al.[7] proposed a 3-D deformable model approach to perform nodule segmentation. El-

Baz et al.[8] segmented the lung nodules in 3-D using variational level sets. Yoo et al.[9] presented

a segmentation technique for semi-solid nodules by introducing a multiphase level sets framework.

Way et al.[10] proposed an explicit active contour method which used 3D gradient and curvature

to penalize contours and to minimize the energy function. K. Chen et al.[11] incorporated a new

fuzzy speed function in the active contour model to evolve the contour. The speed function com-

putation was based on the intensity feature and local shape index. Bin Li at al.[12] used adaptive

local region energy embedded in the active contour model to segment juxta-vascular nodules. In a

broader sense, all deformable models utilize either region-based or boundary-based information in

the image to evolve the curve around an object. However, boundary-based segmentation exhibit

poor convergence in case of noisy or weak boundaries [13]. On the contrary, the region-based active

contour model can suffer over-segmentation or under-segmentation if the object is not correctly

defined by the region properties [14]. Hybrid techniques integrating good features of the region as

well as the boundary of the nodule offer good potential for the development of efficient and accurate

segmentation algorithms.

2.1. Contribution of the proposed work

The motivation for the presented work is to increase the accuracy of lung nodule segmentation in

3-D independently, of the nodule’s shape and size with minimum assumptions and inputs required.

Among many semi-automatic 3-D algorithms that are proposed in the literature, Kostis et al.[15],
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Okada et al.[16], Diciotti et al.[17], Kuhnigk et al.[18], Moltz et al.[19], Bendtsen et al.[20] and

Messay et al.[21] proposed solutions to tackle the complexities due to weak edges, intensity in-

homogeneity and anatomical attachments with the lung nodule. While the aforesaid algorithms

contribute to the state of the art, Kostis et al., Okada et al. and Diciotti et al. in [15-17] directed

their efforts towards small nodule segmentation whereas, Kuhnigk et al., Moltz et al., Bendtsen et

al. and Messay et al. in [18-21] proposed solutions to segment small as well as large nodules at the

expense of several assumptions and user feedback. In contrast, our segmentation model is capable

of extracting nodule contours of any sizes and shapes efficiently with a simple selection of the region

of interest on the CT image.

The proposed hybrid approach exploits the gradient information to precisely identify the location

of nodule whereas, the mean intensity information of nodule prevents contour leakage from the

nodule boundaries. This simple yet intuitive mechanism ensures robust 3-D segmentation of the

lung nodules of varying shapes and sizes with good accuracy.

3. Proposed hybrid segmentation system

The mathematical model and algorithm of our proposed segmentation system are explained in

the following sub-sections. Subsequently, we discuss the architecture and validation databases of

our segmentation system.

3.1. Mathematical Model

We describe F (x) : [0; 1]→ <2 as a parameterized closed planar curve and I : [0; a]× [0; b]→ <+

a given input image in which the contour of the object needs to be detected. The Geodesic Active

Contour (GAC) model which is a boundary-based segmentation method detects the contour by

finding a minimum length of the evolving curve around object. This is achieved by minimizing the

energy of the curve F (x) in a Riemannian space as follows [22] :

E(F ) =

∫
g(F (x))|F ′(x)|dx (1)

Here g is a decreasing edge detection function defined with respect to Riemannian space. The

curve is deformed towards local minima by minimizing the curve evolution flow to 0 using steep-

est descent method. Curve evolution flow is a partial differential equation (PDE), obtained by

computing Euler-Lagrange of Eq. (1) with gradient-descent method as follows:

∂F (t)

∂t
= g(I)k−→an − (∇g.−→an)−→an (2)
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Here k denotes the curvature and −→an represents the unit inward vector normal to the curve

F (x, t). We use the term contour in this paper interchangeably for curve in 2-D and surface in 3-D.

The segmentation PDEs are usually solved using a well-known framework called level sets [23], [24],

[25] and [26]. The level set formulation enables implicit handling of topological changes i.e. merging

and splitting of the contours and offers stability and accuracy in numerical computation. A level

set function is defined as an evolving active contour F ⊂ Ω represented by the zero level set of a

Lipschitz function φ : Ω→ <2. A zero level set is visualized as a hypersurface of level set function

φ representing the active contour F such that F = {x|φ(x) = 0}. Evolution of planar curve F and

deformation of level set function φ are obtained using the following PDEs respectively:

∂F (t)

∂t
= β(−→aN ) (3)

∂φ

∂t
= β|∇φ| (4)

Here β is a function computed on the level sets. Caselles et al. employed Eq. (3) and Eq. (4)

to embed curve evolution PDE of F in Eq. (2) in level set formulation φ as follows:

∂φ

∂t
= g(I) | ∇φ | k +∇g(I).∇φ (5)

Here the value of curvature k is computed as:

k =
∇φ
| ∇φ |

(6)

An extra contracting /expanding term is added to Eq. (5) to increase the speed of convergence

as follows in [27]:

∂φ

∂t
= g(I) | ∇φ | k +∇g(I).∇φ+ vg(I) (7)

Here v is the Lagrange multiplier. The first term in the above PDE represents mean curvature

flow-weighted by edge detection function whereas, the second term attracts the contours to the

boundaries of objects i.e. towards image with a high gradient. The third term is an additional

gradient-based stopping function for fast convergence. The active contour model by Caselles et

al. in Eq. (7) shows leakage of contours in case of weak and/or noisy object boundaries, leading

to wrong convergence. To tackle this problem, we propose to introduce a new stopping function

(I − Imean) based on the mean intensity Imean of the nodule in the curve evolution PDE instead of

gradient term. The curve evolution PDE of Eq. (5) after introducing the new stopping function is

formulated as follows:
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(a) (b) (c)

Figure 1: Curve evolution of the proposed method with (a) correct Imean (b) Imean set lower than desired (c) Imean

set higher than desired

∂φ

∂t
= bg(I) | ∇φ | k + b∇g(I).∇φ+ c(I − Imean) | ∇φ | (8)

Here b and c are pre-defined weights to balance the equation reducing ∂φ
∂t to 0 for steady-state

solution. For computational convenience, a zero level set is represented by the signed distance

function (SDF) i.e. |∇φ| = 1 . Thus, using the SDF property and substituting value of k in Eq.

(8), the foregoing equation is simplified as:

φt = bdiv(g(I)∇φ) + c(I − Imean) (9)

The simplified model presented in Eq. (9) is the proposed hybrid model for lung nodules segmenta-

tion where curve evolution flow term ∂φ
∂t is denoted by φt . Value of g is computed using a Gaussian

kernel with variance σ, whereas the optimal value of σ is found out through experiments to avoid

over(under) segmentation.

The proposed stopping function (I − Imean) attaches the contour to nodule boundaries for

gray- values above Imean . It counters the boundary leakage problem by contracting/expanding the

contour around boundary based on the prior estimated boundary gray-levels threshold enabling fast

convergence. The forces applied to the evolving contour by this new stopping function act normal

to the surface. Figure 1(a) displays the contour evolution using the hybrid method with a correct

gray-level threshold. Two cases of incorrect contour formation due to inappropriate selection of

mean gray-level threshold are illustrated in Figure 1(b) and Figure 1(c) respectively. Evidently,
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a good estimation of Imean is essential for successful segmentation through the presented hybrid

model.

3.1.1. Adaptive technique for Imean calculation

In order to calculate the mean gray-value for correct segmentation, the voxel intensity distri-

bution patterns of lung nodules from test data were investigated. The nodule gray-values were

obtained by drawing a region of interest (ROI) around each target nodule on the reference CT

slice followed by calculation of its ROI properties. The obtained voxels’ gray levels were consistent

within the range of 0 to 2000 in signed 16-bit format. Based on the gray-values, nodules histograms

were plotted and analyzed. A bi-modal frequency trend was observed across all the histograms.

We display our results for 10 bins for three sample nodules with different radio-densities in Figure

2. Moreover, the mean gray-values In of these three nodules and their respective occurrence fre-

quencies fn from Figure 2 are tabulated in Table 1. In order to obtain the desired approximation,

we attempted to identify the bin-wise gray-values within nodule intensity data. This process was

repeated for several nodules to achieve befitting results. We concluded that the last 30 % bins of the

total N bins contain higher intensity values, that approximately represent the bright nodule core as

well as the boundary intensity values. Therefore, Imean is obtained by computing the weighted mean

of the largest 30 % gray-values from gray-level histogram of a lung nodule. A constant gray-value

I0 is introduced to strengthen the Imean estimation. Adaptively, we compute the value of Imean as

follows:

Imean ≈
∑N

m(Infn)∑N
m(fn)

+ Io (10)

Here m is the bin index from upper 30 % of the total N bins. Numerically, the algorithm employs

an iterative scheme to approximate the curve evolution PDE around lung nodule. The level set

function φ takes positive and negative values outside and inside the contour C respectively. We

assume that φt(k+ 1) and φt(k) denote the value of φt(k) at (k+ 1)th and kth iteration respectively.

The hybrid model PDE of Eq.(9) is optimized using the steepest descent gradient method as follows:

φt(k + 1) = φt(k) +4tdiv(g(I)∇φ) + c(I − Imean) (11)

Here 4t defines the predefined update step size. The value of φt(k) is numerically updated at

each iteration undertaking the step-wise procedure explained in Algorithm 1.
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(a) (b) (c)

(d) (e) (f)

Figure 2: (a), (b), (c) show nodules within the ROI with mean radiodensity of -630 HU,-10 HU, and 100 HU

respectively and (d), (e), (f) are gray-values histograms of (a), (b), (c) respectively

3.2. 3-D Segmentation Algorithm

Periodic re-initialization of φ to the SDF in Step 1 and Step 3 helps avoid any irregularities which

can develop during the level set evolution [28]. The value of φt(k + 1) in Step 4 is computed using

Additive Operator Splitting (AOS) method [29] which is an unconditionally stable finite difference

method for GAC problem. AOS scheme enables fast convergence of the algorithm in a few iterations.

3.3. System Architecture

Prior to segmentation process, an observer identifies the target lung nodule on patient’s CT

scans. Based on the identification, a volume of interest (VOI) containing the nodule is cropped

from the entire CT volume and de-noised. Many noise reduction approaches are reported in the

literature which could be applied according to the type of noise in the image [30]. The test CT

images in our proposed method are enhanced by applying an anisotropic diffusion filter to the VOI.

The application of anisotropic diffusion filter is known to preserve the nodule edges while eliminating

the CT image noise [31]. Consequently, better edge based segmentation is obtained in medical CT
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Table 1: Frequency distribution of sample nodules gray-values displayed in Figure 2

S. No
Mean radiodensity

-630 HU

Mean radiodensity

10 HU

Mean radiodensity

100 HU

In fn In fn In fn

1. 39.85 51 74.25 306 74.1 430

2. 111.55 22 220.75 49 220.3 38

3. 183.25 9 367.25 36 366.5 26

4. 254.95 10 513.75 24 512.7 22

6. 326.65 4 660.25 27 658.9 10

6. 398.35 7 806.75 29 805.1 17

7. 470.05 22 953.25 228 951.3 283

8. 541.75 38 1099.8 183 1097.5 237

9. 613.45 30 1246.3 42 1243.7 70

10. 685.15 10 1392.8 6 1389.9 5

images. The anisotropic diffusion equation for an image I(x, y) is given as [31]:

∂I(x, y)

∂t
= div(C(x, y, t)∇I) (12)

Here C(x, y, t) is a conduction coefficient, ∇ is the gradient operator and div is the divergence

operator. The conduction coefficient for edge persevering diffused image is defined as [31]:

C(x, y, t) = e−
|∇I(x,y)|2

2K2 (13)

Here K denotes a conductance parameter. The pre-processed images are shown to the observer

who draws an elliptical region of interest (ROI) closely around the target nodule on a reference

slice. Selection of VOI and ROI takes place through a customized computer interface. This prac-

tice sets a 3-D boundary beyond which the nodule cannot exist and minimizes the inclusion of

vessels and other anatomical structures around the nodule. For the chosen ROI, the program com-

putes the mean gray-level Imean of target nodule using histogram-based technique presented in

subsection 2.1.1 of the paper. The Imean computation is followed by the execution of proposed

system PDE in Eq. (9) in an iterative fashion. The iterative routine is stopped when an op-

timal 3-D nodule segmentation is achieved with a contour appearing around the target nodule.
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Algorithm 1:

Input: b, c, φt(k), I, Imean, k, t, m

Step 1: φt(k) is re-initialized to make |φ| = 1

Step 2: φt(k) is updated to φ̃t(k) = φt(k) +4t(c(I − Imean)

Step 3: φ̃t(k) is re-initialized to |φ| = 1

Step 4: φ̃t(k) is updated to

φt(k + 1) = φ̃t(k) +4tdiv(g(I)∇φ)

Step 5: If φt(k + 1) does not vary for m iterations or k exceeds a prescribed value,

the routine is stopped resulting in optimal nodule segmentation otherwise

control is transferred to Step 1.

Output : 3-D Segmentation

Further, any additional contours evolving around small vessels or structures within the ROI having

a number of voxels less than 30 is removed. This particular value came from our observation that

the smallest nodule has at least 30 voxels irrespective of the voxel size. The program counts the

number of remaining contours if any, on each slice. If two or more objects are detected, the largest

object which is supposedly the nodule is retained while the rest is removed. Figure 3 outlines the

hybrid segmentation system architecture. It is worth noting that segmentation process becomes

challenging with a large ROI selection having too many objects inside it or if the nodule of interest

is not completely included in the ROI. Therefore, for an incorrect segmentation as per an expert’s

evaluation, the process of ROI selection and segmentation can be repeated. Finally, the volume of

the nodule is the volume of one voxel times the total number of voxels contained in the segmented

nodule.

3.4. Validation CT Databases

The experiments were performed by collecting test lung nodules from five different databases

available at an open-access information resource for research purposes, The Cancer Imaging Archive

(TCIA). Table 2 lists the number of nodules collected from each database with the corresponding

slice thickness of CT volume. The resolution of test images is 512 x 512 pixels.

4. Results

The proposed framework is implemented in Matlab while level set re-initialization and AOS

scheme are programmed in C++ language.
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Figure 3: Hybrid System Architecture

System configuration is Intel Core Itanium 5 2430 M processor, 4 GB RAM memory, and 2.40

GHz clock. The parameters used in the algorithm execution are set to following optimal values:

b = 0.02, c = 0.001, t = 1, k = 25, p = 30, I0= 400, Gaussian kernel dimensions = 5x5x5, σ =

0.5. Test CT collections comprise of lung nodules with diverse shapes and sizes and the median of

estimated volumes varies in the order of 92 µl to 61.47 ml.

In Figure 4, we show a step by step execution of the proposed segmentation framework on a

test nodule from the RIDER database with σ = 0.5, σ = 0.3 and σ = 1. The segmentation result

achieved with σ = 0.5 is optimal among the three results obtained with different σ values as can

be seen in Figure 4. To assess our proposed hybrid system, we compare its performance with two
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Table 2: Nodules selection from validation CT Databases

Databases
Number of nodules

scanned

Slice thickness

range (mm)

CUMC[33] 12 1.25

RIDER[33] 10 1.25

FDA[34] 12 0.75

LIDC[35] 28 1.0 − 2.5

SU[36] 10 0.625 − 1.25

CUMC Columbia University Medical Center

RIDER Reference Image Database to evaluate Response Therapy

FDA Food and Drug Administration

LIDC Lung Imaging Database Consortium

SU Stanford University

well-known active contour models. First chosen model is classic Chan-Vese algorithm, a region

based segmentation method which does not utilize object boundary information for segmentation.

The curve evolution PDE of the model in level set form is given as follows in [32]:

φt = −δ(φ)((I − c1)2 − (I − c2)2 − µ∇.
∇φ
|∇φ|

) (14)

Here I is the image function, φ is the level set function, δ(x) is the delta function and µ > 0 is

the length parameter chosen by the user. The constants c1 and c2 are updated at each iteration.

The second chosen model is local robust statistic driven active contour model by Gao et al. [37].

Curve evolution PDE of Gao et al. model for the closed contour φi(q, t) is given as :

φt = [(1− λ)(pi − (f(φi(q, t)))− pc) + ki(q, t)].Ni(q, t) + Sexti (φi(q, t)) (15)

Here pi is the probability density function of the feature space vectors f(φi(q, t)) , pc is the cut

off probability density fixed at 0.1, λ > 0 is the smoothness factor. Ni is the inward unit normal

and ki is the mean curvature for q which is spatial parameterization of the contour. With the intent

of performance evaluation, we carried out manual segmentations of nodule data under the guidance

of an expert radiologist to establish a ground truth. Segmentation and volume estimation using

the Chan-Vese algorithm was performed on the Matlab platform whereas Slicer package [38] was

employed to evaluate Gao et al. method.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: (a) shows reference slice of sample VOI from RIDER database (b) shows ROI selection on de-noised VOI

(c) shows contours evolution within the ROI(σ = 0.5) (d),(e),(f) show segmented nodule after undesirable contours

removal with σ = 0.5(optimal), σ = 0.3 and σ = 1 respectively (g),(h),(i) show the surface areas of nodules in (d),(e)

and (f) respectively
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For the comparison purpose, data sets were chosen from CUMC, FDA and LIDC databases

since these have made available the true and estimated volumes of lung phantoms and lung nod-

ules respectively. The shapes of the phantoms chosen for the experiment are lobulated, elliptical,

spiculated and spherical as described by the CUMC and FDA phantom databases. Types of lung

nodules selected from the LIDC database are well-circumscribed nodules, juxta-vascular nodules,

and juxta-pleural nodules [15]. A well-circumscribed nodule is one which does not have any pul-

monary structures or vessels attached. The nodule with vessels attached is termed as juxta-vascular

nodule whereas, a nodule attached to the chest wall and the pleural surface is known as a juxta-

pleural nodule.

4.1. Visual assessment of the segmentation system

In Figure 5, we show the segmentation of phantoms and their visualized surface areas using the

Chan-Vese, Gao et al. and hybrid methods respectively. For lung nodule segmentation (nodule no.

580, no. 811, no. 965 from LIDC database), the results are presented in Figure 6.

We have a few observations after carrying out the visual comparison of three methods in Figure

5 and Figure 6. To begin with, the segmentation of lobulated, spherical, spiculated and elliptical

nodule phantoms with the Chan-Vese method leads to contours leakage through the edges (Figure

5(a)). The algorithm uses two global terms cin and cout which work inside and outside of the object

boundaries respectively to compute the location of contour. However, lack of gradient information

produces poor results in well defined phantom segmentations in Figure 5(a). The evolved surface

areas are over-estimated and the edges are oversmoothened resulting in a loss of actual nodule

shape.

The second method from Gao et al. employs statistic features of a nodule for segmentation

which includes intensity median, inter-quartile range and median absolute deviation computed in

the neighborhood of each voxel. The resulting contours evolve around the nodule edges in an

irregular manner whereas the obtained surface areas are rough and do not depict the exact shape of

the phantom. This trend is more evident in the cases of elliptical, spherical and spiculated nodules,

shown in Figure 5(b). In comparison, the proposed hybrid model has been able to evolve the contour

as close to the edges as possible by utilizing region and boundary information, hence capturing the

true shape of all the four phantoms in Figure 5(c). The deviation of contour from the nodules’

edges is kept to a minimum.

Evaluating the performance on LIDC database, it is apparent from Figure 6(a) that Chan-

Vese algorithm tends to over-segment juxta-pleural and juxta-vascular nodules leading to a slightly
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enlarged respective surface areas. With Gao et al. method, the evolved surface area of well- circum-

scribed nodule does not represent the true nodule shape as shown in Figure 6(b). Moreover, the

same method does not form a correct contour around juxta-pleural nodule (Figure 6(b)). The hy-

brid system, however successfully segments the well circumscribed and juxta-vascular nodules with

correct surface areas formed whereas in the juxta-pleural nodule, there is a slight over-segmentation

(Figure 6(c)). Comparing the overall performance, the hybrid system has segmented two nodules

correctly whereas Gao et al. method and Chan-Vese method both segmented one each.

4.2. Quantitative assessment of the segmentation system

Quantitative performance of the system is measured in terms of volume bias, spatial overlap,

and volume repeatability.

4.2.1. Volume bias

The volume bias of each of the three methods is estimated as the difference between computed

volume and the true volume of phantoms [39]. Proportional bias is computed for the LIDC data

sets available with the gold standard by applying Bland Altman method of 95 % limits of agreement

[39].

A comparison of volume bias of all the three methods is plotted in Figure 7 for small phantoms

(0.253 ml - 0.71 ml) and large phantom (4.21 ml - 4.44 ml) respectively. The bias of each method

is found to differ with respect to the size of nodules as shown in Figure 7(a) and 7(b). All the

three methods demonstrate an overall negative bias trend for small phantoms (Figure 7(a)). In case

of large phantoms, Gao et al. method and hybrid system both show an equal tendency towards

positive and negative bias whereas, the Chan-Vese method has a negative bias (Figure 7(b)). The

computed absolute mean bias of the hybrid method, Gao et al. method, and the Chan-Vese method

are 0.10± 0.2 ml, 0.19± 0.48 ml and 0.33± 0.21 ml respectively. Hence, the hybrid method shows

the lowest mean bias among the three methods.

Bland Altman analysis with 95 % limits of agreement for the segmented volumes of LIDC data-

sets indicates an absolute mean bias of 0.09 ml, 0.4496 ml and 0.5674 ml for the hybrid method,

Gao et al. method, and the Chan-Vese method respectively. Comparing the bias values, the hybrid

method performs better on the LIDC test nodules.
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Figure 5: Segmentation of lobulated, spherical, elliptical and spiculated phantoms from CUMC and FDA database

and their visualized surface area using (a) Chan-Vese method (b) Gao et al. method (c) Hybrid method
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Figure 6: Segmentation of well-circumscribed (nodule no. 580), juxta-pleural nodule (nodule no. 811) and juxta-

vascular (nodule no. 965) from LIDC database and their visualized surface areas using (a) Chan-Vese method (b)

Gao et al. method (c) Hybrid method
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Table 3: Segmentation performance scores

Parameter Formula Mean Score

F1 Score 2(GS)
(GS+GS) 0.8569± 0.0431

TPR TP
TP+FN 0.87

FPR FP
FP+TN 0.05

4.2.2. Similarity Measure

In addition to comparative analysis, we also evaluate the hybrid system independently on our

chosen validation databases. Dice coefficient DC, also known as the F1 score is employed to

measure the extent of spatial overlap between the ground truth binary image G and the segmented

binary image S. True Positive Rate(TPR) and False Positive Rate(FPR) scores are computed

to further assess the quality of segmentation. We report the obtained mean values in Table 3.

The True Positive(TP) value denote voxels segmented as a nodule that proved to be nodule and

False Positive(FP) denotes voxels segmented as a nodule that proved to be non-nodule. The False

Negative(FN) value represents voxels segmented as a non-nodule that proved to be nodule and True

Negative(TN) represents voxels segmented as a non- nodule that proved to be non-nodule.

The algorithm produces a mean DC/F1 value of 0.8569± 0.0431 whereas, the mean TPR and

FPR scores are 0.87 and 0.05 respectively which attribute to the good performance of the algorithm.

4.2.3. Volume Repeatability

Next, we compute the volume repeatability of algorithm by taking three repeated volume mea-

surements of every test nodule. The Repeatability Coefficient (RC) measures the difference between

the repeated volume measurements under identical set of conditions for 95 % confidence interval as

follows [39]:

RC = 1.96
√

2s2w (16)

Here s2w is the within-subject variance. The second parameter, the within-subject Coefficient of

Variation measures the changes within repeated measurements and is given in [39] as:

wCV =
sw
µ

(17)
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(a)

(b)

Figure 7: Comparison of estimated volume bias of three methods for (a)small phantoms (b)large phantoms
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Table 4: Repeatability results of hybrid system

RC(ml) wCV CCC (95% confidence interval)

0.060 0.152% 0.9981(0.9970 − 0.9988)

RC Repeatability Coefficient

wCV Within-subject Coefficient of Variance

CCC Concordance Correlation Coefficient

Here µ is the mean of measured outcomes. Further, Concordance Correlation Coefficient (CCC)

evaluates the agreement of repeated outcomes with respect to the total variation in the observations

[39]. A total of 72 x 3 = 216 segmentations were carried out to compute the values of RC , wCV

and CCC. The results are reported in Table 4. The algorithm is repeatable by 0.060 ml and the

variance within-subject is 0.152%. A high CCC value of 0.9981 is obtained with 95 % confidence

interval.

5. Discussion

It is important to emphasize the careful selection of ROI geometry for correct nodule seg-

mentation. This is particularly true for nodules with dark contrast and in-homogeneous intensity

values. We assess the impact of ROI geometry on our method by varying the ROI size for the

aforementioned challenging segmentation scenarios. Figure 8(a) and 8(b) show small and large ROI

initialization respectively around a low-intensity nodule and the corresponding segmentation results

are shown in Figure 8(e) and 8(f) respectively. Similar ROI selections around a nodule with in-

tensity inhomogeneity are presented in Figure 8(c) and 8(d), and the corresponding segmentations

are demonstrated in Figure 8(g) and 8(h) respectively. The results show successful segmentation of

low-intensity nodule irrespective of the ROI size. However, a contour leakage occurs when a large

ROI is initialized around the intensity inhomogeneous nodule in Figure 8(h). This could be expected

due to the presence of Imean variable as a stopping function in the hybrid PDE. Therefore, small

contour initialization leads to optimal segmentation and is the preferred choice for our method.

Our system has segmented 68 nodules correctly and failed on two juxta-pleural nodules, one dark

contrast nodule, and two juxta-vascular nodules leading to 93% correct segmentation.

The efficacy of a 3-D segmentation algorithm should be ideally evaluated against standard

databases with available ground truth in order to develop a consensus for benchmarking. Unfor-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: (a),(b) show small and large ROI initialization around a low intensity nodule (c),(d) show small and large

ROI initialization around a nodule with intensity inhomogeneity (e),(f),(g),(h) show segmentation results of (a),(b),(c)

and (d) respectively

tunately, many good segmentation methods in the literature assessed their performance on private

databases making it difficult to draw a comparison. During the last decade however, LIDC database

has emerged as a standard and is widely used for segmentation algorithms evaluation. Therefore,

we assess the efficacy of our proposed work by comparing the hybrid segmentation method with the

best segmentation schemes,new as well as classic with their results published on LIDC database in

Table 5.

We observe that with Diciotti et al.’s[17] work as an exception, all the other proposed methods

including Badura et al.[40], Kubota et al.[41], Messay et al.[21], Wang et al.[42] and Goncalves et

al.[43] evaluated special overlap as a key performance indicator. With the intent of comprehensive

performance analysis, we compute the spatial overlap as well as the volume bias. The hybrid method

achieves a spatial overlap of 0.82 on LIDC database which is a significantly higher value than the

reported aforementioned studies. Comparison of the volume bias value could not be made possible

due to its absence in the chosen published studies.

It is noteworthy that prominent 3-D nodule segmentation methods in the literature have not

considered qualitative nodule shape assessment a part of the performance metric. While Diciotti et

21

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 April 2019                   doi:10.20944/preprints201904.0069.v1

Peer-reviewed version available at Elsevier Computers in Biology and Medicine 2018; doi:10.1016/j.compbiomed.2018.03.015

http://dx.doi.org/10.20944/preprints201904.0069.v1
https://doi.org/10.1016/j.compbiomed.2018.03.015


Table 5: Segmentation performance comparison with existing algorithms on LIDC data sets

Article Databases
Mean spatial

overlap

Mean volume

bias

3-D visual

analysis

P. Badura [40] LIDC 0.6 ± 0.16 - No

Kubota et al. [41] LIDC 0.69 ± 0.18 - No

Diciotti et al. [17] LIDC - - No

Hybrid method LIDC 0.82± 0.08 0.09 ml Yes

Messay et al. [21] LIDC 0.778 ± 0.863 - No

Wang et al. [42] LIDC 0.64 - No

Goncalves et al. [43] LIDC 0.64 - No

al.[44] used shape assessment for nodule segmentation, El-Baz et al.[45] and Krishnamurthy et al.[46]

employed the shape analysis for lung cancer diagnosis. Therefore, an important contribution of our

work in terms of performance analysis is the inclusion of the 3-D visual assessment of segmented

nodules. In this respect, our work can be considered original and the first attempt towards 3-D

qualitative analysis of the test data-sets.

Based on the quantitative and visual comparative analysis presented in the paper, the hybrid

system clearly stands out from segmentation methods by Gao et al. and Chan-Vese. It is capable

of performing accurate segmentation on small as well as on large nodules, and demonstrated a

mean spatial overlap of 85.6 % and mean TPR and FPR as 88% and 5% respectively. Moreover,

the presented method is highly reproducible with a CCC of 0.99. The achieved results showcase

the accuracy, robustness, and stability of the system. One of the future avenues to increase the

efficiency of the proposed method is to improvise on the Imean calculation method to address the

low-intensity problem within the near-end slices. Another possible direction for future research

work is to implement the presented hybrid level set evolution using Sobolev gradient [47][48] and

to evaluate it against our existing implementation of the steepest descent gradient method.

6. Conclusion

We have proposed an accurate, flexible and stable semi-automatic system for lung nodule seg-

mentation in this paper. The aim of the presented method is to increase the accuracy of seg-

mentation by exploiting both, the region as well as the boundary information of the nodule in a
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CT image. Our technique has successfully addressed the boundary leakage problem along with

over-segmentation and under-segmentation issue which is supposedly a problem area in otherwise

preferred region growing techniques. We tested the algorithm on small as well as large-sized lung

nodules from various validation databases and have obtained good segmentation results in terms of

bias, spatial overlap and repeatability. The results indicate that the proposed approach is a needed

step towards accurate nodule segmentation through hybrid deformable models.
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