Preprint
Article

Particle Mass Oscillation through Tachyon Interaction

This version is not peer-reviewed.

Submitted:

03 April 2019

Posted:

04 April 2019

You are already at the latest version

Abstract
In this study, a novel theory to investigate the mass oscillation of particles is proposed. It has been proven that, at high-energy conditions, the fermion field described by Dirac’s Lagrangian interacts with the half-integer spin tachyon field with negative energy, causing the formation of composite particles whose mass depends on the total angular momentum. The proposed theory is based on a new interpretation of the Majorana equation for particles with arbitrary spin and shows that mass oscillation is a phenomenon in which the component of particle decay prevails over that of mixing mass states. Using the kinematic of Lemke for spacelike particle decay, we propose a mechanism able to explain the neutrino flavour change. The proposed mechanism is also investigated concerning the shape of its spectrum. Finally, the Lagrangian field of composite particles is formulated.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

319

Views

131

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated