Preprint
Article

A Data-Driven Approach to Classifying Wave Breaking in Infrared Imagery

This version is not peer-reviewed.

Submitted:

28 March 2019

Posted:

29 March 2019

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
We apply deep convolutional neural networks (CNNs) to estimate wave breaking type from close-range monochrome infrared imagery of the surf zone. Image features are extracted using six popular CNN architectures developed for generic image feature extraction. Logistic regression on these features is then used to classify breaker type. The six CNN-based models are compared without and with augmentation, a process that creates larger training datasets using random image transformations. The simplest model performs optimally, achieving average classification accuracies of 89% and 93%, without and with image augmentation respectively. Without augmentation, average classification accuracies vary substantially with CNN model. With augmentation, sensitivity to model choice is minimized. A class activation analysis reveals the relative importance of image features to a given classification. During its passage, the front face and crest of a spilling breaker are more important than the back face. Whereas for a plunging breaker, the crest and back face of the wave are most important. This suggests that CNN-based models utilize the distinctive `streak' temperature patterns observed on the back face of plunging breakers for classification.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

297

Views

340

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated