Preprint
Article

This version is not peer-reviewed.

TiO2 Self-Assembled, Thin-Walled Nanotube Arrays for Photonic Applications

A peer-reviewed article of this preprint also exists.

Submitted:

25 March 2019

Posted:

26 March 2019

You are already at the latest version

Abstract
Two-dimensional arrays of hollow nanotubes made of TiO2 are a promising platform for sensing, spectroscopy and light harvesting applications. Their straightforward fabrication via electrochemical anodization, growing nanotube pillars of finite length from a Ti foil, allows precise tailoring of geometry and, thus, material properties. We investigate these photonic crystal structures with respect to reduction of front surface reflection, achievable field enhancement, and photonic bands. With the Rigorous Coupled Wave Analysis (RCWA), we study the optical response of photonic crystals made of thin-walled nanotubes relative to the bare Ti foil substrate, including under additional charge carrier doping.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated