Preprint Article Version 1 This version is not peer-reviewed

Synthesis and Characterization of Te Nanotubes Decorated with Pt Nanoparticles for Fuel Cell Anode/Cathode Working at Neutral pH

Version 1 : Received: 7 March 2019 / Approved: 7 March 2019 / Online: 7 March 2019 (13:49:46 CET)

A peer-reviewed article of this Preprint also exists.

Guascito, M.R.; Chirizzi, D.; Filippo, E.; Milano, F.; Tepore, A. Synthesis and Characterization of Te Nanotubes Decorated with Pt Nanoparticles for a Fuel Cell Anode/Cathode Working at a Neutral pH. Catalysts 2019, 9, 328. Guascito, M.R.; Chirizzi, D.; Filippo, E.; Milano, F.; Tepore, A. Synthesis and Characterization of Te Nanotubes Decorated with Pt Nanoparticles for a Fuel Cell Anode/Cathode Working at a Neutral pH. Catalysts 2019, 9, 328.

Journal reference: Catalysts 2019, 9, 328
DOI: 10.3390/catal9040328

Abstract

In fuel-cell technological development, one of the most important objectives is to minimize the amount of Pt, the most employed material as oxygen reduction and methanol oxidation electro-catalyst. In this paper we report the synthesis and characterization of Te nanotubes (TeNTs) decorated with Pt nanoparticles, readily prepared from stirred aqueous solutions of PtCl2 containing a suspension of TeNTs and ethanol acting as a reducing agent, avoiding the use of any hydrophobic surfactants as capping stabilizing substance. The as obtained TeNTs decorated with Pt nanoparticles (TeNTs/PtNPs) have been fully characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area diffraction patterns (SAD), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). We demonstrate that the new material can be successfully employed in fuel cell either as anodic (for methanol oxidation reaction) and cathodic (for oxygen reduction reaction) electrode with high efficiency in terms of related mass activities and on-set improvement. Remarkably, the cell operates in aqueous electrolyte buffered at pH 7.0, thus avoiding acidic or alkaline conditions that may lead e. g. to Pt dissolution (at low pH) and paving the way for the development of biocompatible devices and on chip fuel cells.

Subject Areas

Te nanotubes decorated with Pt nanoparticles; fuel cell neutral pH; oxygen reduction reaction; methanol oxidation reaction; X-ray photoelectron spectroscopy.

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.