Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Establishing Relationships between Drought and Wildfire Danger Indices: A Test Case for the California-Nevada Drought Early Warning System

Version 1 : Received: 15 February 2019 / Approved: 18 February 2019 / Online: 18 February 2019 (09:01:44 CET)
Version 2 : Received: 28 February 2019 / Approved: 1 March 2019 / Online: 1 March 2019 (09:40:59 CET)

A peer-reviewed article of this Preprint also exists.

McEvoy, D.J.; Hobbins, M.; Brown, T.J.; VanderMolen, K.; Wall, T.; Huntington, J.L.; Svoboda, M. Establishing Relationships between Drought Indices and Wildfire Danger Outputs: A Test Case for the California-Nevada Drought Early Warning System. Climate 2019, 7, 52. McEvoy, D.J.; Hobbins, M.; Brown, T.J.; VanderMolen, K.; Wall, T.; Huntington, J.L.; Svoboda, M. Establishing Relationships between Drought Indices and Wildfire Danger Outputs: A Test Case for the California-Nevada Drought Early Warning System. Climate 2019, 7, 52.

Abstract

Relationships between drought and fire danger indices are examined to 1) incorporate fire risk information into the National Integrated Drought Information System California-Nevada Drought Early Warning System and 2) provide a baseline analysis for application of drought indices into a fire risk management framework. We analyzed four drought indices that incorporate precipitation and evaporative demand (E0) and three fire indices that reflect fuel moisture and potential fire intensity. Seasonally averaged fire danger indices were most strongly correlated to multi-scalar drought indices that use E0 (the Evaporative Demand Drought Index [EDDI] and Standardized Precipitation Evapotranspiration Index [SPEI]) at approximately annual time scales that reflect buildup of antecedent drought conditions. Results indicate that EDDI and SPEI can inform seasonal fire potential outlooks at the beginning of summer. An E0 decomposition case study of conditions prior to the Tubbs Fire in Northern California indicate high E0 (97th percentile) driven predominantly by low humidity signaled increased fire potential several days before the start of the fire. Initial use of EDDI by fire management groups during summer and fall 2018 highlights several value-added applications, including seasonal fire potential outlooks, funding fire severity level requests, and assessing set-up conditions prior to large, explosive fire cases.

Keywords

drought; wildfire; drought index; fuel moisture; California; Nevada; evaporative demand

Subject

Environmental and Earth Sciences, Atmospheric Science and Meteorology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.