Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Mitochondrial Impairment Induced by Sub-Chronic Exposure to Multi-Walled Carbon Nanotubes

Version 1 : Received: 15 February 2019 / Approved: 18 February 2019 / Online: 18 February 2019 (08:57:01 CET)

A peer-reviewed article of this Preprint also exists.

Visalli, G.; Facciolà, A.; Currò, M.; Laganà, P.; La Fauci, V.; Iannazzo, D.; Pistone, A.; Di Pietro, A. Mitochondrial Impairment Induced by Sub-Chronic Exposure to Multi-Walled Carbon Nanotubes. Int. J. Environ. Res. Public Health 2019, 16, 792. Visalli, G.; Facciolà, A.; Currò, M.; Laganà, P.; La Fauci, V.; Iannazzo, D.; Pistone, A.; Di Pietro, A. Mitochondrial Impairment Induced by Sub-Chronic Exposure to Multi-Walled Carbon Nanotubes. Int. J. Environ. Res. Public Health 2019, 16, 792.

Abstract

Human exposure to carbon nanotubes (CNTs) can cause health issues due to their chemical–physical features and biological interactions. These nanostructures cause oxidative stress, also due to endogenous ROS production, which increases following mitochondrial impairment. The aim of this in vitro study was to assess the health effects, due to mitochondrial dysfunction, caused by a sub-chronic exposure to a non-acutely toxic dose of multi walled CNTs (raw and functionalised). The A549 cells were exposed to MWCNTs (2 µg mL-1) for 36 days. Periodically, cellular dehydrogenases, pyruvate dehydrogenase kinase 1 (PDK1), cytochrome c release, permeability transition pore (mPTP) opening, transmembrane potential (Δψ m), apoptotic cells, and intracellular ROS were measured. The results, compared to untreated cells and to positive control formed by cells treated with MWCNTs (20 µg mL-1), highlighted the efficiency of homeostasis to counteract ROS overproduction, but a restitutio ad integrum of mitochondrial functionality was not observed. Despite the tendency to restore, the mitochondrial impairment persisted. Overall, the results underlined the tissue damage that can arise following sub-chronic exposure to MWCNTs.

Keywords

MWCNTs; oxidative stress; mitochondria

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.