Preprint
Article

This version is not peer-reviewed.

A Comparison of Ethylene Tar-Derived Isotropic Pitches Prepared by Air Blowing and Nitrogen Distillation Method and Their Carbon Fibers

A peer-reviewed article of this preprint also exists.

Submitted:

07 December 2018

Posted:

10 December 2018

You are already at the latest version

Abstract
Two isotropic pitches were prepared by air blowing and nitrogen distillation method using ethylene tar (ET) as a raw material. And correspondent carbon fibers were obtained through conventional melt spinning, stabilization and carbonization. The structures and properties of resultant pitches and fibers were characterized and their differences were discussed in this work. The results showed that introduction of the oxygen by air blowing method could quickly increase the yield and softening point of pitch. Moreover, the air blown pitch (ABP) composed of linear methylene chains of aromatic molecules while the nitrogen distilled pitch (NDP) mainly contained polycondensed aromatic rings, which was due to the oxygen containing functional groups existed in ABP could impede order stack of pitch molecules and form methylene bridge structure, instead of aromatic condensed structure like NDP. Meanwhile, the spinnability of ABP was not decreased even containing 2.31 wt% oxygen. In contrast, ABP had narrower molecular weight distribution, which contributed to better stabilization properties and higher tensile strength of carbon fiber. The tensile strength of carbon fibers from ABP was reached to 860 MPa with fiber diameter of about 10 μm, which was higher than that of NDP-derived carbon fibers of 640 MPa.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated