Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

A Programmable Mechanical Maxwell's Demon

Version 1 : Received: 23 November 2018 / Approved: 26 November 2018 / Online: 26 November 2018 (05:27:27 CET)

A peer-reviewed article of this Preprint also exists.

Lu, Z.; Jarzynski, C. A Programmable Mechanical Maxwell’s Demon. Entropy 2019, 21, 65. Lu, Z.; Jarzynski, C. A Programmable Mechanical Maxwell’s Demon. Entropy 2019, 21, 65.

Abstract

We introduce and investigate a simple and explicitly mechanical model of Maxwell's demon -- a device that interacts with a memory register (a stream of bits), a thermal reservoir (an ideal gas) and a work reservoir (a mass that can be lifted or lowered). Our device is similar to one that we have briefly described elsewhere [1], but it has the additional feature that it can be programmed to recognize a chosen reference sequence, for instance, the binary representation of $\pi$. If the bits in the memory register match those of the reference sequence, then the device extracts heat from the thermal reservoir and converts it into work to lift a small mass. Conversely, the device can operate as a generalized Landauer's eraser (or copier), harnessing the energy of a dropping mass to write the chosen reference sequence onto the memory register, replacing whatever information may previously have been stored there. Our model can be interpreted either as a machine that autonomously performs a conversion between information and energy, or else as a feedback-controlled device that is operated by an external agent. We derive generalized second laws of thermodynamics for both pictures. We illustrate our model with numerical simulations, as well as analytical calculations in a particular, exactly solvable limit.

Keywords

Maxwell's demon; Shannon entropy; information engine; Landauer's principle; Szilard engine; second law of thermodynamics

Subject

Physical Sciences, Thermodynamics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.