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Abstract: We introduce and investigate a simple and explicitly mechanical model of Maxwell’s1

demon – a device that interacts with a memory register (a stream of bits), a thermal reservoir (an ideal2

gas) and a work reservoir (a mass that can be lifted or lowered). Our device is similar to one that3

we have briefly described elsewhere [1], but it has the additional feature that it can be programmed4

to recognize a chosen reference sequence, for instance, the binary representation of π. If the bits in5

the memory register match those of the reference sequence, then the device extracts heat from the6

thermal reservoir and converts it into work to lift a small mass. Conversely, the device can operate as7

a generalized Landauer’s eraser (or copier), harnessing the energy of a dropping mass to write the8

chosen reference sequence onto the memory register, replacing whatever information may previously9

have been stored there. Our model can be interpreted either as a machine that autonomously performs10

a conversion between information and energy, or else as a feedback-controlled device that is operated11

by an external agent. We derive generalized second laws of thermodynamics for both pictures. We12

illustrate our model with numerical simulations, as well as analytical calculations in a particular,13

exactly solvable limit.14

Keywords: Maxwell’s demon; Shannon entropy; information engine; Landauer’s principle; Szilard15

engine; second law of thermodynamics.16

1. Introduction17

The field of information thermodynamics traces its origins to a whimsical, 150-year-old thought18

experiment. In a letter to a friend [2], James Clerk Maxwell introduced a hypothetical “neat-fingered19

being”, now universally known as Maxwell’s demon, who brings about an apparent violation of the20

second law of thermodynamics, simply by observing the motions of gas molecules and manipulating21

a trapdoor to segregate faster from slower molecules. While Maxwell emphasized the role of the22

demon’s intelligence, subsequent researchers – notably including Marian Smoluchowski [3] and23

Richard Feynman [4] – have considered whether a dumb device might be able to accomplish similar24

results, and if so, what the existence of such a device would imply about the status of the second law.25

In recent decades a consensus has formed around a perspective developed largely by Rolf Landauer,26

Oliver Penrose and Charles Bennett.[5–7] At the heart of this perspective is the notion that if Maxwell’s27

demon were a purely physical machine, then the information it gathers must be stored in a physical28

memory register, commonly represented as a sequence of classical bits. The writing of this information29

increases the entropy of the bits, thereby (so the argument goes) compensating for the decrease of30

entropy that occurs elsewhere as the machine “violates” the second law. Bennett’s analysis of chemical31

proofreading [8] provides an early model system illustrating this idea.32

The past decade has seen renewed interest in this topic, motivated in part by its connections with33

fluctuation theorems and related advances in nonequilibrium statistical physics [9–11], as well as by34

improved experimental capabilities for manipulating small systems [12–23]. Progress has included35
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sharpened relationships between thermodynamic and information-theoretic quantities [24–32] as well36

as a variety of simple model systems more explicit than those explored in the past [1,18–21,33–46].37

Two broad paradigms have emerged in these investigations – autonomous and non-autonomous38

demons. The non-autonomous paradigm echoes Maxwell’s original idea: an external agent that is39

in a sense “outside of Physics” (the demon) performs feedback control on a material object (e.g. a40

trapdoor) to accomplish a task apparently prohibited by the second law. This task may be the creation41

of a temperature gradient as in Maxwell’s scenario, or the conversion of heat into work as in many42

later models such as the Szilard engine[33]. The key idea is that the agent rectifies thermal fluctuations,43

using the information it gains by observing nanoscale motions. In this paradigm, the thermodynamic44

benefits delivered by the agent – such as work generated to lift a mass against gravity – are related to45

the amount of information it gathers about its surroundings.46

By contrast, the autonomous paradigm is all-inclusive, in that the demon and, importantly, its47

memory are explicitly modeled as physical systems.[1,37,40,41,43–46] In this paradigm the goal is often48

to illustrate how a physical machine might actually accomplish results similar to those of Maxwell’s49

imagined neat-fingered being, and to explore quantitatively how the thermodynamic benefits that the50

machine delivers are related to changes in the information content of its memory.51

In the present paper we introduce and analyze a model of Maxwell’s demon that can be interpreted52

within either the autonomous or the non-autonomous paradigm. Our model builds on one that we53

briefly described, with our colleague Dibyendu Mandal, in 2014.[1] Unlike earlier models involving54

systems making stochastic transitions among a discrete set of states[37,38,40–43,45,46], our model is55

entirely mechanistic – the demon and its memory consist of frictionless, moving components immersed56

in a dilute gas, evolving under Newtonian dynamics. Specifically, the demon is a rotational ring57

equipped with two blades and the memory is represented by a sequence of rotating paddles, as shown58

in Fig. 3 and discussed in greater detail in Sec. 2. We showed in Ref. [1] that if the system’s memory59

is initialized in a “clean” state corresponding to the bit sequence “...00000...”, then the mechanistic60

interplay between the ring, the paddles and the dilute gas produces rotational motion that lifts a61

small mass against gravity. In this mode of operation the entire contraption is an information engine,62

rectifying thermal fluctuations to convert heat into work – the fuel for this process is provided by the63

randomization of the memory, as the clean bit stream is converted to a “polluted” mixture of 0’s and64

1’s. Conversely, if the memory begins in a random mixture “...01101...”, then a large mass that drops65

with gravity can be harnessed to reset all the bits to 0’s, illustrating Landauer’s principle [5] that work66

is required to erase information.67

In Ref. [1] a clean memory register was equated with the uniform bit sequence “...00000...”. In68

principle, however, what matters is not uniformity but rather lack of randomness, as quantified69

by Shannon entropy. Let us use the term generalized clean memory to denote an arbitrary but fully70

determined bit sequence, for instance the binary representation of π. Since a fully determined sequence71

is entropically equivalent to the sequence “...00000...”, a generalized clean memory should be able72

to serve as a thermodynamic resource to drive an information engine. This consideration motivates73

us to design a mechanical information engine that operates on a generalized clean memory. Our74

model is programmable, in the following sense: for any choice of pre-determined reference sequence75

– be it the binary representation of π, or the repeating sequence “...010101...”, or for that matter the76

uniform sequence “...000000...” – we can program the system so that if the memory bits are initialized77

in this reference sequence then the machine operates as an information engine, lifting a small mass78

against gravity, as illustrated schematically in Fig. 1. Conversely, if the bits are initialized in a different79

sequence, then the energy from a falling large mass can be used to write the reference sequence onto80

the bits (rather than resetting them all to the 0 state as in Ref. [1]).81

As we will describe in further detail, our system is programmed using a sequence of binary82

programmable gates. If these gates are fixed, prior to the start of the process, to match the chosen83

reference sequence, then the machine operates as an autonomous Maxwell demon. However, we can84

alternatively imagine that an external agent arranges the gates on the fly, one by one, using information85
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based on real-time observations. By thus reinterpreting each programmable gate as a binary switch86

that is feedback controlled by the agent, our model becomes an illustration of a non-autonomous87

Maxwell demon. Analogous to the autonomous picture, where the system can operate in either an88

engine mode or an information copier mode, the agent-involved feedback control picture operates89

either as an engine or information recorder. (See Fig. 2.)90
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Figure 1. In our schematic conception of a programmable, autonomous Maxwell’s demon, a fixed set
of binary gates defines a reference sequence. As the demon interacts one bit at a time with an incoming
sequence of memory bits, it is able to lift a small mass against gravity if the incoming bit sequence
matches the reference sequence. As the demon writes information onto the memory bits, the outgoing
sequence becomes less correlated with the reference sequence. Conversely, if the mass is large and falls
against gravity, then this energy can be used to copy the reference sequence to the memory bits.
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Figure 2. Alternatively, our model can illustrate a non-autonomous device operated via feedback
control by an external agent. (a) In the engine mode, which resembles Szilard’s thought experiment [33],
the agent measures each incoming memory bit and switches a gate accordingly. When these
measurements are accurate, the procedure induces a bias toward counter-clockwise rotation that
can be harnessed to lift a small mass against gravity. (b) If the mass is large and falls against gravity,
the energy that is released can be used to write a sequence chosen by the agent, onto the outgoing bit
stream. In this mode the agent does not measure the incoming bits, but rather manipulates the gate to
encode the desired sequence.

The paper is structured as follows. In Sec. 2 we describe the various components of our device,91

and we sketch how it can operate as an autonomous information engine. In Sec. 3 we describe in92

detail the three possible modes of operation of our autonomous device: as an engine, an eraser (or93

copier) and a “dud”. In Sec. 4 we illustrate these modes of operation using numerical simulations, we94

solve explicitly for the behavior of the model in a particular “slow-moving” limit, and we consider95

its thermodynamic description, including its efficiency. In Sec. 5 we discuss how our model can be96

used to illustrate a non-autonomous machine, operated by an external agent using measurement and97
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feedback – as in Maxwell’s original thought experiment – and we obtain a bound on the amount of98

work that this machine can deliver. We end in Sec. 6 with a brief summary and discussion.99

2. Programmable Maxwell’s Demon100

2.1. Components and basic design101

As mentioned, the machine described in this paper is equipped with a binary reference sequence102

that can be preprogrammed to any desired pattern of 0’s and 1’s – for instance, the binary representation103

of π. This reference sequence is fixed, and is distinct from the sequence of memory bits that interact104

dynamically with the rotational ring. As we will argue, if the incoming memory bits match the105

reference sequence then the ring favors counter-clockwise (CCW) rotation that can be used to perform106

work against an external load.107
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Figure 3. Snapshot of our programmable demon. A series of green paddles move down frictionlessly
along the central axle. The paddles are separated by the red bars into binary states, left (0) and right (1)
– see inset. Each bit passes by the rotational ring (the blue ring with two inward blades) for the same
finite amount of time, during which it can change states. We claim that if the incoming bits (000101 · · · )
are in agreement with the programmed gates (0̄0̄0̄1̄0̄1̄ · · · ), then the ring favors CCW motion, which can
be used to lift an external load. A top view of the system is shown in the inset. A video clip illustrating
the dynamics of our demon is found at https://youtu.be/LkYljJ__-Cs

As illustrated in Figure 3, the entire machine consists of three components – a sequence of108

paddles acting as the bits of a memory register, a set of fixed gates that encode a preprogrammed109

binary reference sequence, and the demon that is realized by a rotational ring: a ring that interacts110

with the memory register via blade-paddle collision and can perform work via rotation against a111

constant external force. We now describe these components in detail, beginning with the paddles that112

constitute the bits of the memory register. These paddles rotate frictionlessly around a central axle.113

The orientation of a paddle is given by an angle θB. When θB ∈ (0, π) the paddle represents a bit in the114

0 state, and when θB ∈ (π, 2π) it represents a bit in the 1 state. Two blocking bars (shown as vertical115
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red bars) located at angles 0 and π prevent each bit from spontaneously flipping between the 0 and 1116

states. Each blocking bar contains a gap, as shown in Fig. 3. The central axle moves downward at a117

constant speed, carrying the bits and gates past the demon. The entire machine is immersed in an ideal118

gas in thermal equilibrium at temperature T. The gas particles collide elastically with the paddles,119

causing them to undergo Brownian-like rotation around the axle. For clarity the gas particles are not120

shown in the figure.121

The preprogrammed reference sequence is encoded in a set of rigid gates attached to the central122

axle, which accompany the paddles as they move downward past the demon. These gates are shown123

as L-shaped blue bars extending perpendicularly from the axle. The orientation of a gate is fixed at124

either θ = 0 (representing state 0̄) or θ = π (state 1̄). When a paddle and its gate arrive at the vertical125

location of the gaps on the red bars, the paddle is able to switch its state by passing through the gap126

that is not blocked by the gate. For example, if the gate is in state 0̄, the gap at θ = 0 is blocked, and the127

bit paddle can switch its state by passing through the gap at θ = π.128

The rigid ring is equipped with two inward-pointing blades, attached at opposite locations. The129

ring rotates freely around the central axle but does not translate or wobble. The angular orientation of130

the ring is specified by θD; see inset of Figure 3. Like the paddles, the ring undergoes Brownian-like131

rotation due to elastic collisions between its blades and the gas particles. Additionally, the ring’s blades132

can collide elastically with the paddles as they move past it. The ring is situated at the vertical height133

of the gaps in the blocking bars. The spacing between bits, the size of the gaps, and the vertical widths134

of the paddles and the ring’s blades are set so that, at any time, there is exactly one paddle within the135

vertical range of the gap, and that paddle is simultaneously within the vertical collision range of the136

ring’s blades. This paddle is called the interacting bit, and its gate is called the engaged gate. We will137

use the term interaction interval to denote the interval of time during which a given paddle acts as an138

interacting bit, and its gate acts as the engaged gate. The duration of the interaction interval, τint, is139

the same for each paddle and gate.140

The life cycle of a given paddle (memory bit) then proceeds as follows. Prior to arriving at the141

vertical level of the ring, the orientation of the paddle, θB, performs Brownian-like motion but the142

binary state of the bit (0 or 1) is frozen due to the presence of the blocking bars. This binary state143

represent an incoming memory bit. Then, over the course of an interaction interval of duration τint, the144

paddle can switch between the 0 and 1 states, by passing through the gap that is not blocked by the145

reference gate; during this interval the paddle also interacts with the blades of the ring. Finally, after146

the interaction interval, as the paddle passes below the vertical level of the ring, the binary state of the147

paddle is once again frozen due to the blocking bars – at this point the paddle represents an outgoing148

memory bit.149

2.2. Memory register – a sequence of bits150

The binary state of an incoming memory bit (paddle), b ∈ {0, 1}, might or might not be the151

same as the binary state of the corresponding reference bit (gate), g ∈ {0̄, 1̄}. We will characterize152

the cleanness of the incoming bit sequence (· · · bn−1, bn, bn+1 · · · ) by the degree to which it matches153

the fixed reference sequence (· · · gn−1, gn, gn+1 · · · ). If the binary state of each incoming memory bit154

matches that of the accompanying gate, i.e. if bn = gn ∀n, then the memory is considered to be perfectly155

clean. If the incoming sequence contains mismatches between memory and reference bits, then these156

mismatches are considered to be impurities that pollute the memory sequence.157

Let Pin(same) denote the fraction of incoming bits that are correctly matched with their reference
bits (00̄ or 11̄), and Pin(diff) the fraction that are mismatched (01̄ or 10̄). We assume that the probability
of a mismatch is independent of the state of the reference bit, and the mismatches are statistically
uncorrelated with one another. We quantify the cleanness of the incoming memory by the excess ratio
of clean bits:

δ = Pin(same)− Pin(diff) ∈ [−1,+1] (1)
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It is useful at this point to introduce a logical variable L that is the Boolean equality between the
states of the bit and the gate: L = B Exy G [47]. That is, the value of L is given by

l = true ≡ same if b = g

l = false ≡ diff if b 6= g
(2)

Here and below, we use the capital letters B, G and L to refer to binary variables, and lower case b, g
and l to denote the values of these variables. The sequences of incoming memory and reference bits
together specify a sequence (· · · ln−1, ln, ln+1 · · · ), whose Shannon entropy, per bit, is given by

SL,in = −
[
Pin(same) log Pin(same) + Pin(diff) log Pin(diff)

]
∈ [0, log 2] (3)

For the outgoing bits (· · · b′n−1, b′n, b′n+1 · · · ) we can similarly define Pout(same), Pout(diff) and

SL,out = −
[
Pout(same) log Pout(same) + Pout(diff) log Pout(diff)

]
(4)

The difference ∆SL = SL,out − SL,in quantifies the cleanness of the memory sequence, per bit, due to158

the interactions between the memory bits and ring. While the interaction between the memory bits159

and the demon might in principle induce correlations among the outgoing bits, in our analysis we will160

ignore these correlations.161

2.3. Work reservoir – a mass that can be raised or lowered162

In addition to the elements described above, an external load, Γ, acts on the ring in the clockwise163

(CW) direction. This load is generated by a mass that hangs from a string wrapped around the ring164

– the gravitational force on the mass produces a CW torque on the ring. If the ring rotates in the165

counter-clockwise (CCW) direction the mass is lifted upwards. This mass is not shown in Figure 3.166

0 1

⇡

2⇡0

0 1

⇡

2⇡0
Biased Rotation Biased Rotation 

0̄

1̄

(a) Gate=Bit=0 (b) Gate=Bit=1 

Figure 4. Engine Mode. The ring prefers CCW rotation when the bit starts with the state that is in
agreement with its corresponding gate. The blue dots represent the programmed gates.

It is useful to understand the operation of our machine in the absence of this load, i.e. when Γ = 0.167

To that end, let us first assume that the incoming bit sequence is perfectly clean: the binary state of168

each memory bit matches that of its reference bit (δ = +1). There are then two possible combinations169

for an incoming memory and reference bit, (00̄) and (11̄), illustrated in Figure 4. In the former case170

(Fig. 4a), the paddle is initially confined (by the blocking bars) within the angular range θB ∈ (0, π).171

During the interaction interval, this paddle has the opportunity to “expand” into the full circular range172

(0, 2π), by swinging through the gap located at θ = π. This opportunity produces a statistical bias that173

favors CCW rotation, which in turn induces a CCW rotational bias for the ring, due to the possibility of174
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collisions between the paddle and the ring’s blades. For the incoming combination (11̄), the expansion175

of the memory bit during the interaction again interval favors CCW rotation as the reference gate176

blocks the gap at θ = π (Fig. 4b). In this manner, over the course of many interaction intervals the ring177

settles into a steady state in which the ring rotates systematically in the counterclockwise direction –178

the thermal fluctuations generated by collisions with the gas particles are rectified to produce directed179

rotation. In this steady state there is a continual exchange of energy (due to collisions) between the180

ring’s blades and the gas, but this exchange does not lead to a net flow of energy in one direction.181

By similar arguments, the maximally unclean situation (δ = −1) produces an identical bias in182

the clockwise direction. More generally, each correctly matched pair of memory and reference bits183

generates a bias toward CCW rotation, while each mismatched pair generates a bias toward CW184

rotation. Hence, over many interaction intervals, our ring (in the absence of an external load) produces185

a rotational bias whose direction is CCW for δ > 0 and CW for δ < 0. The strength of the bias is186

quantified by |δ|.187

Let us now assume δ > 0 and imagine that we add an external load, Γ > 0. If the load is188

sufficiently small then the bias generated by the ring will continue to produce CCW rotation (albeit at189

a lower rate than if the load were absent) thereby lifting the mass against gravity. In this situation the190

ring settles into a steady state in which energy is systematically withdrawn from the heat bath (gas)191

and delivered to perform mechanical work.192

3. Operational Modes of the Programmable Demon193

More generally, the behavior of our ring depends on four parameters that we consider to be194

tunable: the memory cleanness δ, the bath temperature T, the external load Γ, and the duration of the195

interaction interval τint. 1 Depending on the values of these four parameters, the machine operates in196

one of three different modes – as an information engine, an information eraser or a dud. In the limit197

τint → ∞ the model becomes analytically solvable (see Sec. 4.2), and its behavior is determined by the198

dimensionless parameters δ and βΓ, where β = (kBT)−1, as illustrated by the phase diagram shown in199

Figure 10. We now discuss each mode separately.200

3.1. Engine mode201

As mentioned in Sec. 2.3, for δ > 0 and sufficiently small Γ > 0, the ring is able to convert energy
drawn from the heat bath into work against the external load, thereby operating as an engine. In the
limiting case δ = 1, each incoming bit is matched perfectly to its reference bit, but this is no longer the
case with the outgoing bits:

δ′ ≡ Pout(same)− Pout(diff) < 1 (5)

More generally, when δ > 0 and the ring operates in the engine mode we have

δ > δ′ > 0 (6)

as CCW rotation tends to generate mismatches between memory bits and reference bits. Eq. 6 indicates202

that there is greater uncertainty – less correlation with the reference bits – in the outgoing memory203

sequence than in the incoming sequence: ∆SL > 0. In effect, the decrease of thermodynamic entropy204

associated with the continual withdrawal of energy from the heat bath, is compensated by the increase205

of the Shannon entropy of the memory register. Our ring thus operates as an information engine, with a206

clean sequence of incoming bits serving as a thermodynamic resource that allows the system to convert207

heat from the bath into work against the load, without violating the second law of thermodynamics.208

1 All other parameters, such as the mass and density of gas particles, the length of the paddles, etc., are fixed in our model.
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In the non-programmable engine of Ref. [1], an incoming sequence of 0’s is converted into a209

mixture of 0’s and 1’s. It is natural to view this conversion as a process of writing information to the bit210

sequence. The outgoing pattern encodes information about the history of the ring, as outgoing 1’s are211

correlated with CCW rotation during the corresponding interaction intervals. In the present model, by212

contrast, both the incoming and the outgoing sequences are mixtures of 0’s and 1’s. We can still view213

this as a process of writing information, provided this information is defined relative to the reference214

bits: a mismatch between an outgoing memory bit and its reference bit indicates a likelihood that CCW215

rotation occurred during that bit’s interaction interval. Alternatively, for the present model we might216

view the incoming sequence as containing information (e.g. the binary digits of π), which is “digested”217

by the ring as it rectifies thermal fluctuations to generate work. Regardless of whether we interpret the218

ring as writing information onto a clean memory sequence, or digesting information contained in that219

sequence, the net result is the same: when the ring acts as an engine, the outgoing bit sequence is more220

disordered than the incoming one, ∆SL > 0.221

3.2. Eraser mode222

Now let us consider what happens when (1) the incoming bit sequence is maximally unclean223

(δ = 0) i.e. the incoming bits are uncorrelated with the reference bits, and (2) a large mass produces a224

strong external load in the CW direction, Γ > 0. During a given interaction interval the mass drops as225

far as it can, producing CW rotation of the ring until the interacting paddle (bit) is pinched between226

one of the blades of the ring and the rigid engaging gate associated with that paddle, as illustrated227

in Figure 5. If the reference bit is in state 0̄, then the engaging gate is located at θ = 0 and the paddle228

that encodes the memory bit is forced by the CW rotation into a state 0 < θB � π, corresponding to229

the binary state 0 (Figure 5a). Conversely, if the reference bit is in state 1̄, then the engaging gate is230

situated at θ = π and the paddle is forced into a state π < θB � 2π, corresponding to the binary state231

1 (Figure 5b). In either case, at the end of the interaction interval the memory bit matches the reference232

bit (00̄ or 11̄).233

In this mode of operation, the ring harnesses the gravitational energy of the falling mass to234

decrease the randomness in the bit sequence. Specifically, ∆SL = − log 2 < 0, since the outgoing bits235

are perfectly matched to the reference bits; see Eqs. 3 and 4. This decrease in the Shannon entropy of236

the memory bit stream is compensated by an increase in the thermodynamic entropy of the heat bath,237

as the energy from the falling mass is ultimately dissipated into the bath.238

The model developed in Ref. [1] displayed a similar mode of operation, with a falling mass239

converting an incoming sequence of 0’s and 1’s into an outgoing sequence of 0’s. We referred to this240

mode as Landauer’s eraser, as it illustrated Landauer’s principle that heat must be dissipated in order to241

erase information. We will use the same terminology to refer to the mode of operation just described242

for the present model, although Landauer’s copier might be more apt in this context, since the net effect243

is that the preprogrammed reference sequence is copied onto the memory bits.244

3.3. Dud mode245

It is useful to think of a clean memory (δ = 1) as a thermodynamic resource, just as a mass that246

has been lifted against gravity is a thermodynamic resource. The engine and eraser modes represent247

an interplay between these two resources, in which one resource is depleted in order to increase the248

other. Thus in the engine mode, the cleanness of the memory bit stream is diminished in order to249

raise the mass against gravity, while in the eraser mode the gravitational potential energy of the mass250

is spent in order to obtain a clean memory. When the incoming bit stream is sufficiently clean and251

the external load (mass) is sufficiently small, the ring acts as an engine, whereas when the incoming252

bits are disordered and the mass is large, it acts as an eraser. For intermediate values of δ and Γ, the253

ring might act either in the engine mode or in the eraser mode, depending on the values of other254

parameters such as the interaction time τint and the temperature and density of the surrounding gas.255
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Figure 5. Eraser (Copier) Mode. Under a strong external load, CW rotation occurs until the bit becomes
pinched between the engaging gate (shown as a blue dot situated on the gray dashed line) and a blade
of the ring. The binary state of the memory bit then matches that of the reference bit.

There is also a third possibility: the mass drops while the disorder of the memory increases,256

∆SL > 0. We call this the dud mode, since it represents a wasteful depletion of both thermodynamic257

resources. This mode arises either if the incoming memory sequence contains a surplus of mismatches258

over correct matches, δ < 0, and the load Γ > 0 is not sufficiently strong to produce an even greater259

surplus of correct matches in the outgoing sequence – this is illustrated by the white area region260

appearing in the second quadrant in Fig. 10 – or if a surplus of correct matches in the incoming261

sequence is not sufficient to raise the mass against gravity, while simultaneously the load Γ > 0 is not262

sufficient to counter the tendency of the bits to randomize – this is illustrated by the narrow white263

tongue appearing in the first quadrant in Fig. 10.264

In the dud mode, the Shannon entropy of the memory sequence increases, ∆SL > 0, and the265

thermodynamic entropy of the surrounding gas increases, as it absorbs the energy of the falling mass.266

4. Numerical and analytical results267

4.1. Numerical simulations268

We performed numerical simulations of our contraption immersed in a dilute gas, modeling the269

collisions between the gas particles and the paddles and blades as Poisson processes. The probability270

per unit time that a gas particle strikes a particular location of a given paddle or blade is determined271

by the temperature T and density of the gas, the angular velocity of the paddle or blade, and the272

radial location of the point of collision. During a given interaction interval we simulate the dynamics273

of the ring and the interacting bit as a sequence of events. Each event is a blade-paddle collision, a274

paddle-gate collision, or a collision of a gas particle with either the paddle or the blade. After each275

event the angular velocity of the blade and/or paddle is appropriately updated, and the next event is276

generated stochastically using the Gillespie algorithm [48]. At the end of the interaction interval the277

machine undergoes a bit renewal, in which the old interacting bit is replaced by a new one, whose278

angular location θB and velocity θ̇B are assigned randomly according to the values of δ and T.279

Fig. 6 shows eleven angular trajectories of the angular rotation of the ring, θD(t), illustrating280

the engine mode and the dud mode. The simulations were performed at temperature kBT = 1 and281

load Γ = 0.05 kBT, for eleven different values of the cleanness of the incoming memory bits, δ. Each282

simulation lasted for 2000 interaction intervals, representing 2000 incoming bits, with τint = 20.283

The gates were prepared in the repeating binary sequence “...0101101011...′′. In agreement with the284

arguments of Sec. 3, when δ is close to 1, the ring undergoes systematic counterclockwise rotation285
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and the ring performs work against the external load, lifting the mass against gravity (engine mode).286

For less clean incoming sequences, with values δ ≤ 0.6, the ring can no longer overcome the external287

torque and rotates clockwise (dud mode).288
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Figure 6. Trajectories of the ring’s angular orientation for different values of δ at fixed load Γ = 0.05 kBT,
with a bit renewal rate of 1 bit per 20 seconds (τint = 20). For δ = 1 and δ = 0.8 the ring performs work
against the clockwise external torque, while for the other values of δ, the external load dominates and
work is dissipated into the heat bath.

To illustrate the eraser mode, Fig 7 shows four trajectories simulated as in Fig. 6, except that we289

fix δ = 0.2 and vary the external torque: Γ[kBT] = 0.1, 0.15, 0.2, 0.25. As expected, the stronger the290

load, the faster the ring rotates in the CW direction, leading to more energy dissipated into the heat291

bath. We find that for Γ ≥ 0.15 kBT, the outgoing sequence is cleaner than the incoming sequence of292

bits hence the ring functions as an eraser.293

4.2. Analytical results for the slow-moving limit294

Let us now consider the limit of long interaction time τint → ∞. In this limit the behavior of the295

ring during one interaction interval becomes uncorrelated with its behavior in the next interval. The296

average work performed by the ring, W, and the Shannon entropy change of the memory tape, ∆SL,297

can then be computed analytically and are given by Eqs. 7 and 11 below. We now sketch the approach298

that is taken to obtain these results, leaving the technical details to the Appendix.299

Letting (θB, θD) denote the instantaneous configuration of the composite system – the interacting300

bit and the ring – we depict the relevant features of configuration space in Figure 8, with bold solid301

lines representing hard wall boundaries. Note that the boundary conditions depend on the state of the302

reference bit, 0̄ or 1̄, through the placement of the engaging gate at θ = 0 or θ = π.303

During a given interaction interval, the ring and interacting bit undergo random collisions with304

the surrounding bath particles, while the external load imposes a potential energy contribution ΓθD that305

generates a CW torque on the ring. The ring and bit are confined within a single parallelogram-shaped306

cell in configuration space (see Fig. 8), and the composite system (θB, θD) has sufficient time to relax to307

equilibrium within this cell. Hence, if the composite system begins within a particular cell at the start308

of an interaction interval, then at the end of the interval its statistical state is given by a Boltzmann309

distribution restricted to that cell.310

Let us suppose that during the initial interaction interval the composite system is found in one311

of the two shaded cells depicted in Fig. 8, depending on the state of the reference bit. Let peq
0̄ (θB, θD)312

and peq
1̄ (θB, θD) denote the equilibrium distributions restricted to these two cells. The correlations313

between θB and θD differ in these two distributions, but if we integrate either distribution over θB, then314

the resulting marginal equilibrium distributions for θD are identical: peq
D (θD) =

∫
dθB peq

0̄ =
∫

dθB peq
1̄ .315
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Figure 7. Trajectories of the ring’s angular orientation for different values of CW external torque
Γ, at fixed δ = 0.2. For each trajectory, the ring rotates in the CW direction and thus the
energy of the falling mass is dissipated into the heat bath. With increasing external torque (Γ =

0.1kBT, 0.15kBT, 0.2kBT, 0.25kBT), the cleanness of the outgoing sequence of bits increases as well:
δ′ = 0.1884, 0.2694, 0.4062, 0.4742. For Γ ≥ 0.15kBT we obtain δ′ > 0.2 hence the ring acts as an eraser,
removing randomness from the incoming sequence.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 November 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 November 2018                   doi:10.20944/preprints201811.0570.v1

Peer-reviewed version available at Entropy 2019, 21, 65; doi:10.3390/e21010065

http://dx.doi.org/10.20944/preprints201811.0570.v1
http://dx.doi.org/10.3390/e21010065


12 of 23

0

2⇡

�2⇡

✓B

✓D

⇡ 2⇡
0

2⇡

�2⇡

✓B

✓D

⇡ 2⇡

Gate = 0̄ Gate = 1̄

#0

#1

#2

#-2

#-1

#1

#0

#-1

#-2

#-3

#0

(a) (b)

Figure 8. The configuration space of the ring and interacting bit. The tilted lines at θD − θB = nπ

depict hard boundaries associated with a collision between the interacting bit paddle and either blade
of the ring. The vertical solid lines correspond to the location of the engaging gate that blocks the
paddle. This gate is located at θ = 0 = 2π when the reference bit is set to 0̄, panel (a), or at θ = π when
the reference bit is set to 1̄, panel (b). The dashed lines in (b) represent periodic boundary conditions.
The hard wall boundaries partition the configuration space into parallelogram-shaped cells, which are
numbered as shown, with cell #0 shaded in each panel.

The distribution peq
D has support in the region −π ≤ θD ≤ 2π. In the absence of an external load,316

both peq
0̄ and peq

1̄ are uniform distributions within the shaded regions, and peq
D (θD) has the shape of317

an isosceles trapezoid. In the opposite limit of a strong external load Γ � kBT, peq
D (θD) is strongly318

concentrated near θD = −π (due to the Boltzmann factor e−βΓθD ), as the memory bit paddle becomes319

pinched between one of the ring’s blades and the engaging gate.320

At the start of the next interaction interval, the memory and reference bits are replaced, or renewed,321

by the arrival of a new paddle and engaging gate. The location of the engaging gate now reflects322

the new reference bit, 0̄ or 1̄. The state of the new memory bit, b, either matches or mismatches the323

reference bit, with a probability determined by the value of δ. We can treat the configuration of the324

incoming memory bit as a random, uniform sample either from the range 0 ≤ θB < π if b = 0, or325

from π ≤ θB < 2π if b = 1. This renewal process instantaneously maps the final distribution of the326

composite system at the end of one interaction interval, into a new initial distribution at the beginning327

of the next interval, as the variable θB now refers to the new memory bit rather than the old one. This328

mapping depends on the state of the new bit, as illustrated in Figure 9. At the start of a new interaction329

interval, the bit and ring configurations, θB and θD, are uncorrelated.330

If the machine (bit + ring) is found in cell #k during one interaction interval, and if the new,331

incoming memory and reference bits are correctly matched, then during the next interval it will be332

found in one of four possible cells, corresponding to a displacement ∆k = −1, 0, 1 or 2, as illustrated333

in Figs. 8 and 9 for k = 0. The probability distribution for ∆k is determined by considering how the334

equilibrium distribution restricted to the initial cell (#k) is redistributed by the mapping that occurs335

upon bit renewal. By similar arguments, if the incoming memory and reference bits are mismatched,336

then the displacement is ∆k = −2,−1, 0 or 1.337

The process then repeats itself over the next interaction interval: the probability distribution338

relaxes to equilibrium within each cell, and then renewal occurs when the new memory and reference339
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Figure 9. The shaded regions indicate the distribution of the composite system right after renewal, for
the case when the memory bit is correctly matched with the reference bit. For purpose of illustration,
we assume that just before the renewal the system was found in either one of the shaded cells shown in
Fig. 8, both corresponding to #0. In (a), the new memory and reference bits are in the combined state
(00̄), whereas (b) corresponds to the combination (11̄). The marginal probability distribution of the
ring’s angle, peq

D (θD), is unaffected by the renewal mapping.

bits arrive. Thus, from one interaction interval to the next, we can treat the dynamics of the ring340

as a discrete time random walk along a lattice of cells, with each step ∆k sampled randomly from341

a distribution that depends on whether the incoming memory and reference bits are matched or342

mismatched. The net result is that ∆k can range from −2 to +2, with probabilities determined by the343

values of δ and Γ. On average, each positive (negative) unit increment in k corresponds to CCW (CW)344

rotation of the ring by half a circle.345

Following the considerations discussed above, we have computed the probability distribution for
∆k analytically, and from these results we have determined the average work performed by the ring,
per interaction interval (see Appendix A for details):

W =
πβΓδ− πβΓ [3 coth(πβΓ) + csch(πβΓ)] + 4

2β
(7)

In the limit of a weak external load, Eq. 7 gives

W ≈ δπΓ/2 (0 < Γ� kBT) (8)

and the ring acts as an engine when δ > 0, in agreement with the discussion in Sec. 2.3. In the opposite
limit of strong external load we get

W ≈ (δ− 3)πΓ/2 (Γ� kBT) (9)

hence W < 0, as expected. As a consistency check on Eq. 7, both of the limiting cases represented by346

Eqs. 8 and 9 can be verified by directly calculating the average displacement of θD per period, resulting347

from the renewal mapping illustrated in Figs. 8 and 9.348
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Figure 10. The phase diagram of the programmable Maxwell’s demon in the limit τint → ∞. Here
the behavior of the ring depends only on the sequence cleanness, δ, and the external torque scaled by
bath temperature, βΓ. For finite values of τint, the behavior of the ring depends separately on three
quantities β, Γ and δ.

Additionally, we can compute the fractions of bit-gate agreement and disagreement in the
outgoing tape:

Pout(same) =
eΓπβ

eΓπβ + 1
, Pout(diff) =

1
eΓπβ + 1

. (10)

In the limit of a strong external load (Γ� kBT) virtually all outgoing bits will be forced to match the
reference bits, as each bit paddle becomes pinched between then ring’s blade and the engaging gate;
see Sec. 3.2. Per interaction period, the change of the Shannon entropy of the memory tape with respect
to the gate is

∆SL =
1− δ

2
log
(

1− δ

2

)
+

1 + δ

2
log
(

1 + δ

2

)
− eπβΓ

eπβΓ + 1
log
(

eπβΓ

eπβΓ + 1

)
− 1

eπβΓ + 1
log
(

1
eπβΓ + 1

) (11)

where recall that the variable L = B Exy G is the Boolean equality between the state of the bit and the349

state of the gate (see Sec. 2.2).350

Combining Eqs. 7 and 11, we obtain (see Appendix B for details)

∆SL −
W

kBT
= DKL [Pin|Pout] +

πβΓ
tanh(πβΓ/2)

− 2 (12)

where DKL ≥ 0 is the Kullback-Leibler divergence [49] between the incoming and outgoing bit
distributions. Since x/ tanh(x) > 1 for all x 6= 0, Eq. 12 implies

kB∆SL −
W
T
≥ 0 (13)

which is a strict inequality when Γ 6= 0. Because the work W is equal to the average energy extracted351

from the heat bath, per bit, the term −W/T represents the net change in the thermodynamic entropy352

of bath. As a result, Eq. 13 can be viewed as a statement of the second law of thermodynamics: the353

sum of the entropy changes of the bit stream and heat bath must be non-negative. Notice that this354

interpretation relies on treating the information content of the bit stream (multiplied by kB) as a genuine355

thermodynamic entropy, on par with the Clausius entropy.356
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Eq. 13 suggests natural definitions of the machine’s thermodynamic efficiency in both the engine
and the eraser mode. When the ring functions as an eraser, we have

W < kBT∆SL < 0 (14)

and the efficiency is defined as

ηeraser =
kBT∆SL

W
< 1 (15)

When the ring functions as an engine,

kBT∆SL > W > 0 (16)

and the efficiency is defined as

ηengine =
W

kBT∆SL
< 1 (17)

When the ring functions in the dud mode, W < 0 < kBT∆SL.357

In Fig. 11 we plot the thermodynamic efficiency over the phase diagram of the machine. By358

definition η > 0 within the regions corresponding to the engine and eraser modes, but η drops to359

zero at the boundaries of these regions, where the ring becomes a dud. For example, a point on the360

boundary of the engine mode, with δ, βΓ > 0, represents a stalled state. Here the ring generates just361

enough CCW torque to match the CW torque exerted by the external load (hence W = 0), nevertheless362

there is a positive rate of entropy generation in the bit stream (∆SL > 0). If the load Γ is decreased by a363

small amount, then the ring will produce a slight CCW rotation, resulting in an engine with very low364

efficiency.365

0.1

0.2

0.3

�

�
�

Figure 11. Efficiency plot of the programmable demon, obtained analytically in the limit τint → ∞.
Since efficiency is defined only for the eraser and engine modes, the dud region is left blank.

4.3. Second law of thermodynamics in the slow moving limit366

We have obtained Eq. 13 from our exact solution of the dynamics in the slow-moving limit, but367

the result has the character of a generalized, information-theoretic second law of thermodynamics (as368

already mentioned), and its validity may extend to finite values of τint. While it is difficult to establish369

this validity from first principles, we can make some progress by ignoring correlations (of any sort)370
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from one interval to the next, as we do in the following statistical treatment in which the variables B371

and G are treated as information-bearing degrees of freedom [50].372

At the start of an interaction interval, let Pin
BG(b, g) denote the joint probability to find the memory373

bit in state b ∈ {0, 1} and the reference gate in state g ∈ {0̄, 1̄}, and let Pin
B (b) and Pin

G (g) denote the374

corresponding marginal distributions. Let SBG, SB and SG denote the Shannon entropies of these375

distributions.376

Then
Sin

BG = Sin
B + Sin

G − Iin
BG (18)

where

Iin
BG = ∑

b,g
Pin

BG log
Pin

BG

Pin
B Pin

G
≥ 0 (19)

is the mutual information [51] between the bit and gate states. Defining similar quantities for the
outgoing states, the net change in the combined entropy over one interaction interval is

∆SBG = ∆SB + ∆SG − ∆IBG

= ∆SB − ∆IBG
(20)

where ∆SBG = Sout
BG − Sin

BG, etc. Since the state of the gate remains fixed we have ∆SG = 0, whereas377

both SB and IBG typically change during the interaction interval.378

We have used the variables B and G to specify the combined state of a memory and reference bit,
but we could equally well specify this state using the variables L and G, leading to

∆SBG = ∆SLG = ∆SL − ∆ILG (21)

where ∆SLG, ∆SL and ILG are defined as above, but with L in place of B.379

The Hamiltonian analysis of Ref. [28] (see in particular Eq. 47 therein) suggests that the change
in the Shannon entropy of the information-bearing degrees of freedom B and G obeys a generalized
second law of thermodynamics: W/kBT ≤ ∆SBG. Combining with Eq. 21 gives us

W
kBT

≤ ∆SL − ∆ILG = ∆SL − Iout
LG (22)

Here we have used our assumption that incoming mismatches are statistical uncorrelated with the380

state of the gate (Sec. 2.2) to set Iin
LG = 0. Since mutual information is non-negative, Eq. 22 immediately381

implies Eq. 13, but note that Eq. 22 provides a stronger bound than Eq. 13. In effect, if correlations382

develop between the reference gate G and the logical state L, then these correlations represent an383

“unused” information-thermodynamic resource. In the slow-moving limit, these correlations vanish384

since the demon and bit fully equilibrate, hence Eq. 22 reduces to Eq. 13 in that limit.385

5. Our machine as a feedback controlled device386

In previous sections we have presented our model as an autonomous system, whose various387

components (paddles, gas particles, etc.) evolve without external interference. With a slight388

modification our model can serve to illustrate a non-autonomous device: a machine that is manipulated389

via measurement and feedback. In this non-autonomous interpretation, the ring can again operate390

as an engine that lifts a mass against gravity, as we describe in Sec. 5.1. We then show how the391

inequality given by Eq. 22 for the autnomous case, can be translated into an inequality that applies392

to non-autonomous measurement and feedback, Eq. 26 below. Finally, in Sec. 5.3 we show how our393

model can be modified to act as a non-autonomous device that uses the energy of a dropping mass to394

write a desired target sequence to a stream of bits.395
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Figure 12. A non-autonomous version of our model. The snapshot is taken right at the time of bit
renewal. The agent observes the state of the new bit (state 1) and simultaneously sets the gate 1̄ to be
effective. Thus the new bit can switch state only through the unblocked gate 0̄. In this illustration, the
agent’s measurement is faithful and thus the ring is able to work in the engine mode.

5.1. Feedback controlled engine396

Consider a setup that is essentially the same as that described in Sec. 2, but without the sequence397

of rigid reference gates (the blue L-shaped bars in Fig. 3). In their place is a single, switchable gate398

that can be set to block either one of the two gaps (in the red blocking bars) positioned at the vertical399

location of the ring. We will say that the gate is in the 0̄ state when it blocks the gap at θ = 0, and in400

the 1̄ state when it blocks the gap at θ = π; the latter case is depicted in Fig. 12.401

Throughout this section we assume that the incoming bits arrive in a fully randomized sequence,402

with 0’s and 1’s distributed equally. We introduce an external agent who performs measurement and403

feedback on these bits; see Fig. 12. The agent observes each new bit as it arrives, and at the moment404

of bit renewal (when the incoming bit becomes the interacting bit) the agent sets the switchable gate405

accordingly: if it observes the incoming bit to be in state 0 (or 1), it sets the switchable gate to state 0̄406

(or 1̄).407

If the agent performs error-free measurements, faithfully identifying the state of each incoming408

bit, then from the perspective of the ring the situation is equivalent to the case δ = 1 analyzed in Sec. 2.409

Namely, the blocked gate is matched with the state of the incoming bit so as to produce, during each410

interaction interval, a statistical bias in favor of CCW rotation. In the long run, this bias can cause a411

small mass to be lifted against gravity, systematically extracting energy from the heat bath and thereby412

reducing its entropy. Since (by assumption) the incoming bits arrive in a fully randomized sequence,413

the decrease in the entropy of the bath cannot be “paid for” by increasing the Shannon entropy of the414

bits. Rather, the model illustrates how an external agent, by performing measurement and feedback,415

can rectify fluctuations to produce an apparent violation of the second law of thermodynamics. Of416

course there is no real violation, as the physical nature of the agent is not being taken into account –417

like Maxwell, we have effectively inserted a “magical creature” into our model.418

We further generalize this scenario to include the possibility of measurement errors. For each419

incoming bit, let ε denote the probability that the agent misidentifies the bit state and therefore blocks420

the “wrong” gate. This situation is equivalent to the one analyzed in Sec. 3.1, with δ = 1− 2ε. For421

sufficiently small error rate ε and load Γ, the machine may still lift the mass against gravity, despite the422

measurement errors.423
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The non-autonomous model described in this section is similar to Maxwell’s original thought424

experiment, and even more so to the Szilard engine [33], in which an agent determines whether a425

gas particle is within the left or right half of a box, then appropriately attaches a mass that can be426

lifted by the expansion of the single-particle gas. In our model, the “expansion” of a bit paddle from427

the half-circle to the full circle during each interaction interval plays the role of the expansion of the428

single-particle gas in the Szilard model. Note, however, that in the case of the Szilard engine the429

same gas particle is recycled from one iteration of the measurement-and-feedback process to the next,430

whereas our model uses a sequence of “gas particles” (incoming bits) that can act as a memory register.431

This allows our model to act not only as an engine but also as a device that writes information, as we432

discuss in Sec. 5.3.433

5.2. The second law of thermodynamics with feedback control434

We have noted the equivalence between the measurement-and-feedback scenario described in435

Sec. 5.1 (with error rate ε) and the autonomous engine of Sec. 3.1 (with δ = 1− 2ε). Let us use this436

equivalence to obtain a second law inequality for the measurement-and-feedback process.437

As before, let Pin
BG(b, g) denote the joint probability distribution describing the initial state of the

bit and blocked gate – just after the agent has measured the bit and set the gate accordingly. During
the interaction interval, 0 < t < τint, the machine operates autonomously, hence (see Sec. 4.3)

W
kBT

≤ ∆SBG = ∆SG + ∆SB − ∆IBG (23)

Since the gate state G does not change during the interaction interval, ∆SG = 0. Also, since the fully
randomized incoming bit stream contains equal populations of 0’s and 1’s, the same will be true (by
symmetry) of the outgoing bit stream, hence Sin

B = Sout
B = log 2, and ∆SB = 0. We thus get

W
kBT

≤ −∆IBG = Iin
BG − Iout

BG (24)

The initial mutual information is simply the information gained by the measurement process:

Iin
BG = Imeas = log 2 + (1− ε) log(1− ε) + ε log ε (25)

The final mutual information quantifies the degree to which B and G remain correlated at the end of
the interval; we will refer to this value as the residual information: Ires = Iout

BG . We thus have

W
kBT

≤ Imeas − Ires, (26)

i.e. the extracted work W is bounded by the amount of information gathered during the measurement,
minus the amount “left over” at the end of the interval. Hence the gathered information is a
thermodynamic resource, and the difference Imeas − Ires represents the amount of that resource that is
consumed, per interaction interval. Since Ires ≥ 0, Eq. 26 immediately implies the weaker bound

W
kBT

≤ Imeas. (27)

Eq. 27 was originally derived within the framework of stochastic thermodynamics by Sagawa438

and Ueda in Refs. [26,27], and Eq. 26 was subsequently obtained by the same authors in Refs. [29,52].439

We also note that the net change in the mutual information between the bit and the gate, ∆IBG, can be440

interpreted as the integrated information flow, within the bipartite approach developed by Horowitz and441

Esposito [30]. This information flow is negative (hence Imeas − Ires > 0 ), as information is consumed442

to extract energy to lift the mass.443
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5.3. Feedback controlled information recorder444

In the eraser mode discussed in Sec. 3.2, our autonomous machine removes randomness from445

the incoming bit stream, replacing it with a preprogrammed sequence encoded in the reference gates.446

In the present context of an externally manipulated machine, let us imagine that the agent desires447

to write a particular target sequence, e.g. 011010 · · · , to the bit stream. The agent does not perform448

measurements on the incoming bits, but as each bit arrives the agent sets the switchable gate to match449

the corresponding element of the target sequence. Then, as in Sec. 3.2, the CW torque produced by the450

gravitational pull of the mass produces a tendency to set the state of the interacting bit to match the451

desired target value, through the “pinching” mechanism illustrate in Fig. 5. The fidelity of the writing452

process increases with the torque Γ generated by the gravitational force on the mass, and the energy of453

the dropping mass is dissipated into the heat bath.454

6. Concluding remarks455

In this paper we have presented a model of a programmable, mechanical Maxwell’s demon,456

that can be interpreted either as an autonomous device, as described in Sections 2 - 4, or as a457

non-autonomous device manipulated by external measurement and feedback control, as in Section 5.458

For these distinct interpretations, we have obtained distinct forms of the second law of thermodynamics,459

represented by Eqs. 22 and 26. While these results have been obtained within the specific context of460

our model, it would be useful to investigate whether they point to more general thermodynamic laws,461

in situations involving both autonomous and non-autonomous (i.e. feedback-controlled) devices. For462

instance, as indicated in Sec. 5.2, the inequalities given by Eqs. 26 and 27 have been obtained previously463

under assumptions of bipartite, Markovian dynamics [26,27,29,30,52]. By contrast, we have obtained464

these results within a Newtonian model of colliding particles and paddles, which suggests that they465

might be derived more generally within a classical, Hamiltonian framework.466

Additionally, we have obtained analytical results for the work delivered by our device, Eq. 7,467

and the change in the Shannon entropy of the bits, Eq. 11, in the limit of a slowly-moving stream468

of bits, τint → ∞. For finite τint, the interactions between the bits and the demon may induce469

statistical correlations among the outgoing bits. Such correlations, which could in principle act as470

a thermodynamic resource, have not been considered in our analysis. It would be interesting to471

investigate how these correlations might affect the inequalities that we have derived.472
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Appendix Work delivered per interaction interval.476

To compute the mean work that our device delivers to life a mass against gravity, we must477

compute the mean angular displacement of the ring per interaction interval. This displacement can478

be determined by considering the transition from the end of an interaction interval (see Fig. 8) to479

the beginning of the next interaction interval (see Fig. 9). Recall that during a particular interaction480

interval, the composite system is confined within a single cell in (θB, θD)-space, as illustrated by the481

shaded region in Fig. 8(a). At the moment of bit renewal the value of θB changes suddenly, hence the482

system may find itself in a different cell immediately after bit renewal, as illustrated in Fig. 9(a). We483

characterize this transition by the change ∆k in the cell index. At a coarse-grained level the evolution484

of the system from one interval to the next becomes a random walk of discrete jumps in k-space.485

Here we compute the probability of the jumps conditioned on the agreement or disagreement486

between the state of the bit and its corresponding gate. At the moment of bit renewal, the state of the487

system can either remain in the same cell (∆k = 0), it can jump up or down by one cell (∆k = ±1), or up488

or down by two cells (∆k = ±2). Note however that the value ∆k = +2 is possible only if the incoming489

bit matches the incoming gate (as in Fig. 9), and the value ∆k = −2 can occur only if the bit and gate490

are mismatched. To illustrate how to compute the probabilities of these various events, let us imagine491
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that immediately after renewal, both the incoming bit and its reference gate are in the 0 state. Then492

the probability distribution for the system is partitioned among the four shaded regions appearing in493

Fig. 9(a), each of which corresponds to a particular value of ∆k, and the distribution within each of494

these cells is inherited from the equilibrium distribution just prior to bit renewal (Fig. 8). By integrating495

over the distribution within each region, and then summing over all possible combinations of incoming496

bit and gate, we obtain the following results.497

When the incoming bit agrees with its gate (e.g. bit=1 and gate=1̄ or bit=0 and gate=0̄), we have

Psame
+2 ≡ P0,0̄

+2 = P1,1̄
+2 =

πβΓ + eπβΓ(πβΓ− 2) + 2

πβΓ
(
eπβΓ − 1

)2 (eπβΓ + 1
) (A1)

Psame
+1 ≡ P0,0̄

+1 = P1,1̄
+1 =

eπβΓ [πβΓ
(
eπβΓ − 3

)
+ 2
]
− 2

πβΓ
(
eπβΓ − 1

)2 (eπβΓ + 1
) (A2)

Psame
stay ≡ P0,0̄

stay = P1,1̄
stay =

eπβΓ [πβΓ + eπβΓ (−3πβΓ + 2eπβΓ − 2
)]

πβΓ
(
eπβΓ − 1

)2 (eπβΓ + 1
) (A3)

Psame
−1 ≡ P0,0̄

−1 = P1,1̄
−1 =

e2πβΓ [πβΓ + eπβΓ(πβΓ− 2) + 2
]

πβΓ
(
eπβΓ − 1

)2 (eπβΓ + 1
) (A4)

Psame
−2 ≡ P0,0̄

−2 = P1,1̄
−2 = 0 (A5)

If the incoming bit mismatches its gate, we find

Pdiff
+2 ≡ P0,1̄

+2 = P1,0̄
+2 = 0 (A6)

Pdiff
+1 ≡ P0,1̄

+1 = P1,0̄
+1 =

πβΓ + eπβΓ(πβΓ− 2) + 2

πβΓ
(
eπβΓ − 1

)2 (eπβΓ + 1
) (A7)

Pdiff
stay ≡ P0,1̄

stay = P1,0̄
stay =

eπβΓ [πβΓ
(
eπβΓ − 3

)
+ 2
]
− 2

πβΓ
(
eπβΓ − 1

)2 (eπβΓ + 1
) (A8)

Pdiff
−1 ≡ P0,1̄

−1 = P1,0̄
−1 =

eπβΓ [πβΓ + eπβΓ (−3πβΓ + 2eπβΓ − 2
)]

πβΓ
(
eπβΓ − 1

)2 (eπβΓ + 1
) (A9)

Pdiff
−2 ≡ P0,1̄

−2 = P1,0̄
−2 =

e2πβΓ [πβΓ + eπβΓ(πβΓ− 2) + 2
]

πβΓ
(
eπβΓ − 1

)2 (eπβΓ + 1
) (A10)

The net probability to take a step ∆k at the moment of bit renewal is then given by

R∆k = Pin(same) · Psame
∆k + Pin(diff) · Pdiff

∆k =
1 + δ

2
Psame

∆k +
1− δ

2
Pdiff

∆k (A11)

Over a long observation time, i.e. many interaction intervals, these discrete jumps in k-space
produce average rotations by amounts ∆θD = −2π, − π, 0, π, 2π, per time interval τbit. The average
work delivered per interval is simply the average rotation of the demon per interval multiplied, by the
external torque:

W = 2πΓ · R+2 + πΓ · R+1 − πΓ · R−1 − 2πΓ · R−2

=
πβΓδ− πβΓ [3 coth(πβΓ) + csch(πβΓ)] + 4

2β

(A12)
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Appendix Compatibility with the second law of thermodynamics.498

Here we show that our analytical solution of the programmable demon in the slow-moving limit499

obeys the second law of thermodynamics.500

For convenience, define x ≡ δ and y ≡ (eλ − 1)/(eλ + 1), where λ ≡ πβΓ. Then Eq. 11 becomes

∆SL =
1− x

2
ln

1− x
2

+
1 + x

2
ln

1 + x
2
−
(

1− y
2

ln
1− y

2
+

1 + y
2

ln
1 + y

2

)
(A13)

and the dimensionless work done per bit (Eq. 7) is

βW =
λx
2
− λ

2
[3 coth(λ) + csch(λ)] + 2 (A14)

=
x
2

ln
1 + y
1− y

+ 2− 1
2

(
2
y
+ y
)

ln
1 + y
1− y

(A15)

Taking the difference, we get

∆SL − βW = −2 +
1
y

ln
1 + y
1− y

+
x
2

ln
(1 + x)(1− y)
(1− x)(1 + y)

+
1
2

ln
(1 + x)(1− x)
(1− y)(1 + y)

(A16)

=
x + 1

2
ln

(1 + x)/2
(1 + y)/2

+
1− x

2
ln

(1− x)/2
(1− y)/2

+
1
y

ln
1 + y
1− y

− 2 (A17)

where x ∈ [−1,+1] and y ∈ (−1,+1). Note also that Pin(same/diff) = (1± x)/2 (see Eq. 1) and
Pout(same/diff) = (1± y)/2 (see Eq. 10), which allows us to rewrite the above expression as

∆SL − βW = DKL [Pin|Pout] +
1
y

ln
1 + y
1− y

− 2 (A18)

where DKL ≥ 0 is the Kullback-Leibler divergence [49] between the incoming and outgoing bit501

distributions.502

Next, we show that
1
y

ln
1 + y
1− y

− 2 ≥ 0 (A19)

by expanding the logarithm as an infinite series:

1
y

ln
1 + y
1− y

− 2 =
1
y

(
∞

∑
n=0

(−1)nyn+1

n + 1
+

∞

∑
n=0

yn+1

n + 1

)
− 2 (A20)

=
1
y

∞

∑
n=0

2y2n+1

2n + 1
− 2 (A21)

=
∞

∑
n=1

2y2n

2n + 1
≥ 0 (A22)

where the equality is achieved when y = 0. Alternatively, we can rewrite the left side in terms of λ:

1
y

ln
1 + y
1− y

− 2 =
λ

tanh(λ/2)
− 2 = 2

(
λ/2

tanh(λ/2)
− 1
)
≥ 0 (A23)

where the last inequality follows since |a| ≥ | tanh a| for any real a.503

We thus confirm that in the slow-moving limit, our Maxwell’s demon satisfies ∆SL − βW ≥ 0,504

where the equality is achieved only when the external force is absent and the incoming sequence is505

totally random.506
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