

Article

A Programmable Mechanical Maxwell's Demon

Zhiyue Lu ^{1,‡,*} and Christopher Jarzynski ^{2,3,4,‡,*}

¹ James Franck Institute, University of Chicago, Illinois 60637

² Institute for Physical Science and Technology, University of Maryland, College Park 20742

³ Department of Chemistry and Biochemistry, University of Maryland, College Park 20742

⁴ Department of Physics, University of Maryland, College Park 20742

* Correspondence: zhiyelu@gmail.com, cjarzyns@umd.edu

‡ These authors contributed equally to this work.

Version November 26, 2018 submitted to

Abstract: We introduce and investigate a simple and explicitly mechanical model of Maxwell's demon – a device that interacts with a memory register (a stream of bits), a thermal reservoir (an ideal gas) and a work reservoir (a mass that can be lifted or lowered). Our device is similar to one that we have briefly described elsewhere [1], but it has the additional feature that it can be programmed to recognize a chosen reference sequence, for instance, the binary representation of π . If the bits in the memory register match those of the reference sequence, then the device extracts heat from the thermal reservoir and converts it into work to lift a small mass. Conversely, the device can operate as a generalized Landauer's eraser (or copier), harnessing the energy of a dropping mass to write the chosen reference sequence onto the memory register, replacing whatever information may previously have been stored there. Our model can be interpreted either as a machine that autonomously performs a conversion between information and energy, or else as a feedback-controlled device that is operated by an external agent. We derive generalized second laws of thermodynamics for both pictures. We illustrate our model with numerical simulations, as well as analytical calculations in a particular, exactly solvable limit.

Keywords: Maxwell's demon; Shannon entropy; information engine; Landauer's principle; Szilard engine; second law of thermodynamics.

1. Introduction

The field of information thermodynamics traces its origins to a whimsical, 150-year-old thought experiment. In a letter to a friend [2], James Clerk Maxwell introduced a hypothetical “neat-fingered being”, now universally known as *Maxwell's demon*, who brings about an apparent violation of the second law of thermodynamics, simply by observing the motions of gas molecules and manipulating a trapdoor to segregate faster from slower molecules. While Maxwell emphasized the role of the demon's intelligence, subsequent researchers – notably including Marian Smoluchowski [3] and Richard Feynman [4] – have considered whether a dumb device might be able to accomplish similar results, and if so, what the existence of such a device would imply about the status of the second law. In recent decades a consensus has formed around a perspective developed largely by Rolf Landauer, Oliver Penrose and Charles Bennett.[5–7] At the heart of this perspective is the notion that if Maxwell's demon were a purely physical machine, then the information it gathers must be stored in a physical memory register, commonly represented as a sequence of classical bits. The writing of this information increases the entropy of the bits, thereby (so the argument goes) compensating for the decrease of entropy that occurs elsewhere as the machine “violates” the second law. Bennett's analysis of chemical proofreading [8] provides an early model system illustrating this idea.

The past decade has seen renewed interest in this topic, motivated in part by its connections with fluctuation theorems and related advances in nonequilibrium statistical physics [9–11], as well as by improved experimental capabilities for manipulating small systems [12–23]. Progress has included

36 sharpened relationships between thermodynamic and information-theoretic quantities [24–32] as well
37 as a variety of simple model systems more explicit than those explored in the past [1,18–21,33–46].

38 Two broad paradigms have emerged in these investigations – *autonomous* and *non-autonomous*
39 demons. The non-autonomous paradigm echoes Maxwell’s original idea: an external agent that is
40 in a sense “outside of Physics” (the demon) performs feedback control on a material object (e.g. a
41 trapdoor) to accomplish a task apparently prohibited by the second law. This task may be the creation
42 of a temperature gradient as in Maxwell’s scenario, or the conversion of heat into work as in many
43 later models such as the Szilard engine[33]. The key idea is that the agent rectifies thermal fluctuations,
44 using the information it gains by observing nanoscale motions. In this paradigm, the thermodynamic
45 benefits delivered by the agent – such as work generated to lift a mass against gravity – are related to
46 the amount of information it gathers about its surroundings.

47 By contrast, the autonomous paradigm is all-inclusive, in that the demon and, importantly, its
48 memory are explicitly modeled as physical systems.[1,37,40,41,43–46] In this paradigm the goal is often
49 to illustrate how a physical machine might actually accomplish results similar to those of Maxwell’s
50 imagined neat-fingered being, and to explore quantitatively how the thermodynamic benefits that the
51 machine delivers are related to changes in the information content of its memory.

52 In the present paper we introduce and analyze a model of Maxwell’s demon that can be interpreted
53 within either the autonomous or the non-autonomous paradigm. Our model builds on one that we
54 briefly described, with our colleague Dibyendu Mandal, in 2014.[1] Unlike earlier models involving
55 systems making stochastic transitions among a discrete set of states[37,38,40–43,45,46], our model is
56 entirely mechanistic – the demon and its memory consist of frictionless, moving components immersed
57 in a dilute gas, evolving under Newtonian dynamics. Specifically, the demon is a rotational ring
58 equipped with two blades and the memory is represented by a sequence of rotating paddles, as shown
59 in Fig. 3 and discussed in greater detail in Sec. 2. We showed in Ref. [1] that if the system’s memory
60 is initialized in a “clean” state corresponding to the bit sequence “...00000...”, then the mechanistic
61 interplay between the ring, the paddles and the dilute gas produces rotational motion that lifts a
62 small mass against gravity. In this mode of operation the entire contraption is an *information engine*,
63 rectifying thermal fluctuations to convert heat into work – the fuel for this process is provided by the
64 randomization of the memory, as the clean bit stream is converted to a “polluted” mixture of 0’s and
65 1’s. Conversely, if the memory begins in a random mixture “...01101...”, then a large mass that drops
66 with gravity can be harnessed to reset all the bits to 0’s, illustrating Landauer’s principle [5] that work
67 is required to erase information.

68 In Ref. [1] a clean memory register was equated with the uniform bit sequence “...00000...”. In
69 principle, however, what matters is not uniformity but rather lack of randomness, as quantified
70 by Shannon entropy. Let us use the term *generalized clean memory* to denote an arbitrary but *fully*
71 *determined* bit sequence, for instance the binary representation of π . Since a fully determined sequence
72 is entropically equivalent to the sequence “...00000...”, a generalized clean memory should be able
73 to serve as a thermodynamic resource to drive an information engine. This consideration motivates
74 us to design a mechanical information engine that operates on a generalized clean memory. Our
75 model is programmable, in the following sense: for any choice of pre-determined *reference sequence*
76 – be it the binary representation of π , or the repeating sequence “...010101...”, or for that matter the
77 uniform sequence “...000000...” – we can program the system so that if the memory bits are initialized
78 in this reference sequence then the machine operates as an information engine, lifting a small mass
79 against gravity, as illustrated schematically in Fig. 1. Conversely, if the bits are initialized in a different
80 sequence, then the energy from a falling large mass can be used to write the reference sequence onto
81 the bits (rather than resetting them all to the 0 state as in Ref. [1]).

82 As we will describe in further detail, our system is programmed using a sequence of binary
83 *programmable gates*. If these gates are fixed, prior to the start of the process, to match the chosen
84 reference sequence, then the machine operates as an autonomous Maxwell demon. However, we can
85 alternatively imagine that an external agent arranges the gates on the fly, one by one, using information

86 based on real-time observations. By thus reinterpreting each programmable gate as a binary switch
 87 that is feedback controlled by the agent, our model becomes an illustration of a non-autonomous
 88 Maxwell demon. Analogous to the autonomous picture, where the system can operate in either an
 89 engine mode or an information copier mode, the agent-involved feedback control picture operates
 90 either as an engine or information recorder. (See Fig. 2.)

Figure 1. In our schematic conception of a programmable, autonomous Maxwell's demon, a fixed set of binary gates defines a *reference sequence*. As the demon interacts one bit at a time with an incoming sequence of memory bits, it is able to lift a small mass against gravity if the incoming bit sequence matches the reference sequence. As the demon writes information onto the memory bits, the outgoing sequence becomes less correlated with the reference sequence. Conversely, if the mass is large and falls against gravity, then this energy can be used to copy the reference sequence to the memory bits.

Figure 2. Alternatively, our model can illustrate a non-autonomous device operated via feedback control by an external agent. (a) In the engine mode, which resembles Szilard's thought experiment [33], the agent measures each incoming memory bit and switches a gate accordingly. When these measurements are accurate, the procedure induces a bias toward counter-clockwise rotation that can be harnessed to lift a small mass against gravity. (b) If the mass is large and falls against gravity, the energy that is released can be used to write a sequence chosen by the agent, onto the outgoing bit stream. In this mode the agent does not measure the incoming bits, but rather manipulates the gate to encode the desired sequence.

91 The paper is structured as follows. In Sec. 2 we describe the various components of our device,
 92 and we sketch how it can operate as an autonomous information engine. In Sec. 3 we describe in
 93 detail the three possible modes of operation of our autonomous device: as an engine, an eraser (or
 94 copier) and a “dud”. In Sec. 4 we illustrate these modes of operation using numerical simulations, we
 95 solve explicitly for the behavior of the model in a particular “slow-moving” limit, and we consider
 96 its thermodynamic description, including its efficiency. In Sec. 5 we discuss how our model can be
 97 used to illustrate a non-autonomous machine, operated by an external agent using measurement and

⁹⁸ feedback – as in Maxwell’s original thought experiment – and we obtain a bound on the amount of work that this machine can deliver. We end in Sec. 6 with a brief summary and discussion.

100 2. Programmable Maxwell's Demon

101 2.1. Components and basic design

As mentioned, the machine described in this paper is equipped with a binary reference sequence that can be preprogrammed to any desired pattern of 0's and 1's – for instance, the binary representation of π . This *reference sequence* is fixed, and is distinct from the sequence of *memory bits* that interact dynamically with the rotational ring. As we will argue, if the incoming memory bits match the reference sequence then the ring favors counter-clockwise (CCW) rotation that can be used to perform work against an external load.

Figure 3. Snapshot of our programmable demon. A series of green paddles move down frictionlessly along the central axle. The paddles are separated by the red bars into binary states, left (0) and right (1) – see inset. Each bit passes by the rotational ring (the blue ring with two inward blades) for the same finite amount of time, during which it can change states. We claim that if the incoming bits (000101 · · ·) are in agreement with the programmed gates ($\bar{0}\bar{0}\bar{0}\bar{1}\bar{0}\bar{1}\cdots$), then the ring favors CCW motion, which can be used to lift an external load. A top view of the system is shown in the inset. A video clip illustrating the dynamics of our demon is found at https://youtu.be/LkYljJ__Cs

As illustrated in Figure 3, the entire machine consists of three components – a sequence of paddles acting as the bits of a memory register, a set of fixed gates that encode a preprogrammed binary reference sequence, and the demon that is realized by a rotational ring: a ring that interacts with the memory register via blade-paddle collision and can perform work via rotation against a constant external force. We now describe these components in detail, beginning with the paddles that constitute the bits of the memory register. These paddles rotate frictionlessly around a central axle. The orientation of a paddle is given by an angle θ_B . When $\theta_B \in (0, \pi)$ the paddle represents a bit in the 0 state, and when $\theta_B \in (\pi, 2\pi)$ it represents a bit in the 1 state. Two blocking bars (shown as vertical

116 red bars) located at angles 0 and π prevent each bit from spontaneously flipping between the 0 and 1
 117 states. Each blocking bar contains a gap, as shown in Fig. 3. The central axle moves downward at a
 118 constant speed, carrying the bits and gates past the demon. The entire machine is immersed in an ideal
 119 gas in thermal equilibrium at temperature T . The gas particles collide elastically with the paddles,
 120 causing them to undergo Brownian-like rotation around the axle. For clarity the gas particles are not
 121 shown in the figure.

122 The preprogrammed reference sequence is encoded in a set of rigid gates attached to the central
 123 axle, which accompany the paddles as they move downward past the demon. These gates are shown
 124 as L-shaped blue bars extending perpendicularly from the axle. The orientation of a gate is fixed at
 125 either $\theta = 0$ (representing state $\bar{0}$) or $\theta = \pi$ (state $\bar{1}$). When a paddle and its gate arrive at the vertical
 126 location of the gaps on the red bars, the paddle is able to switch its state by passing through the gap
 127 that is not blocked by the gate. For example, if the gate is in state $\bar{0}$, the gap at $\theta = 0$ is blocked, and the
 128 bit paddle can switch its state by passing through the gap at $\theta = \pi$.

129 The rigid ring is equipped with two inward-pointing blades, attached at opposite locations. The
 130 ring rotates freely around the central axle but does not translate or wobble. The angular orientation of
 131 the ring is specified by θ_D ; see inset of Figure 3. Like the paddles, the ring undergoes Brownian-like
 132 rotation due to elastic collisions between its blades and the gas particles. Additionally, the ring's blades
 133 can collide elastically with the paddles as they move past it. The ring is situated at the vertical height
 134 of the gaps in the blocking bars. The spacing between bits, the size of the gaps, and the vertical widths
 135 of the paddles and the ring's blades are set so that, at any time, there is exactly one paddle within the
 136 vertical range of the gap, and that paddle is simultaneously within the vertical collision range of the
 137 ring's blades. This paddle is called the *interacting bit*, and its gate is called the *engaged gate*. We will
 138 use the term *interaction interval* to denote the interval of time during which a given paddle acts as an
 139 interacting bit, and its gate acts as the engaged gate. The duration of the interaction interval, τ^{int} , is
 140 the same for each paddle and gate.

141 The life cycle of a given paddle (memory bit) then proceeds as follows. Prior to arriving at the
 142 vertical level of the ring, the orientation of the paddle, θ_B , performs Brownian-like motion but the
 143 binary state of the bit (0 or 1) is frozen due to the presence of the blocking bars. This binary state
 144 represent an *incoming* memory bit. Then, over the course of an interaction interval of duration τ^{int} , the
 145 paddle can switch between the 0 and 1 states, by passing through the gap that is not blocked by the
 146 reference gate; during this interval the paddle also interacts with the blades of the ring. Finally, after
 147 the interaction interval, as the paddle passes below the vertical level of the ring, the binary state of the
 148 paddle is once again frozen due to the blocking bars – at this point the paddle represents an *outgoing*
 149 memory bit.

150 2.2. Memory register – a sequence of bits

151 The binary state of an incoming memory bit (paddle), $b \in \{0, 1\}$, might or might not be the
 152 same as the binary state of the corresponding reference bit (gate), $g \in \{\bar{0}, \bar{1}\}$. We will characterize
 153 the cleanliness of the incoming bit sequence $(\dots b_{n-1}, b_n, b_{n+1} \dots)$ by the degree to which it matches
 154 the fixed reference sequence $(\dots g_{n-1}, g_n, g_{n+1} \dots)$. If the binary state of each incoming memory bit
 155 matches that of the accompanying gate, i.e. if $b_n = g_n \forall n$, then the memory is considered to be perfectly
 156 clean. If the incoming sequence contains mismatches between memory and reference bits, then these
 157 mismatches are considered to be impurities that pollute the memory sequence.

Let $P_{\text{in}}(\text{same})$ denote the fraction of incoming bits that are correctly matched with their reference
 bits ($0\bar{0}$ or $1\bar{1}$), and $P_{\text{in}}(\text{diff})$ the fraction that are mismatched ($0\bar{1}$ or $1\bar{0}$). We assume that the probability
 of a mismatch is independent of the state of the reference bit, and the mismatches are statistically
 uncorrelated with one another. We quantify the cleanliness of the incoming memory by the excess ratio
 of clean bits:

$$\delta = P_{\text{in}}(\text{same}) - P_{\text{in}}(\text{diff}) \in [-1, +1] \quad (1)$$

It is useful at this point to introduce a logical variable L that is the *Boolean equality* between the states of the bit and the gate: $L = B \text{ Exy } G$ [47]. That is, the value of L is given by

$$\begin{aligned} l = \text{true} &\equiv \text{same} & \text{if } b = g \\ l = \text{false} &\equiv \text{diff} & \text{if } b \neq g \end{aligned} \quad (2)$$

Here and below, we use the capital letters B , G and L to refer to binary variables, and lower case b , g and l to denote the values of these variables. The sequences of incoming memory and reference bits together specify a sequence $(\dots l_{n-1}, l_n, l_{n+1} \dots)$, whose Shannon entropy, per bit, is given by

$$S_{L,\text{in}} = -[P_{\text{in}}(\text{same}) \log P_{\text{in}}(\text{same}) + P_{\text{in}}(\text{diff}) \log P_{\text{in}}(\text{diff})] \in [0, \log 2] \quad (3)$$

For the outgoing bits $(\dots b'_{n-1}, b'_n, b'_{n+1} \dots)$ we can similarly define $P_{\text{out}}(\text{same})$, $P_{\text{out}}(\text{diff})$ and

$$S_{L,\text{out}} = -[P_{\text{out}}(\text{same}) \log P_{\text{out}}(\text{same}) + P_{\text{out}}(\text{diff}) \log P_{\text{out}}(\text{diff})] \quad (4)$$

158 The difference $\Delta S_L = S_{L,\text{out}} - S_{L,\text{in}}$ quantifies the cleanliness of the memory sequence, per bit, due to
159 the interactions between the memory bits and ring. While the interaction between the memory bits
160 and the demon might in principle induce correlations among the outgoing bits, in our analysis we will
161 ignore these correlations.

162 2.3. *Work reservoir – a mass that can be raised or lowered*

163 In addition to the elements described above, an external load, Γ , acts on the ring in the clockwise
164 (CW) direction. This load is generated by a mass that hangs from a string wrapped around the ring
165 – the gravitational force on the mass produces a CW torque on the ring. If the ring rotates in the
166 counter-clockwise (CCW) direction the mass is lifted upwards. This mass is not shown in Figure 3.

167 **Figure 4.** Engine Mode. The ring prefers CCW rotation when the bit starts with the state that is in
168 agreement with its corresponding gate. The blue dots represent the programmed gates.

167 It is useful to understand the operation of our machine in the absence of this load, i.e. when $\Gamma = 0$.
168 To that end, let us first assume that the incoming bit sequence is perfectly clean: the binary state of
169 each memory bit matches that of its reference bit ($\delta = +1$). There are then two possible combinations
170 for an incoming memory and reference bit, $(0\bar{0})$ and $(1\bar{1})$, illustrated in Figure 4. In the former case
171 (Fig. 4a), the paddle is initially confined (by the blocking bars) within the angular range $\theta_B \in (0, \pi)$.
172 During the interaction interval, this paddle has the opportunity to “expand” into the full circular range
173 $(0, 2\pi)$, by swinging through the gap located at $\theta = \pi$. This opportunity produces a statistical bias that
174 favors CCW rotation, which in turn induces a CCW rotational bias for the ring, due to the possibility of

175 collisions between the paddle and the ring's blades. For the incoming combination (11), the expansion
 176 of the memory bit during the interaction again interval favors CCW rotation as the reference gate
 177 blocks the gap at $\theta = \pi$ (Fig. 4b). In this manner, over the course of many interaction intervals the ring
 178 settles into a steady state in which the ring rotates systematically in the counterclockwise direction –
 179 the thermal fluctuations generated by collisions with the gas particles are rectified to produce directed
 180 rotation. In this steady state there is a continual exchange of energy (due to collisions) between the
 181 ring's blades and the gas, but this exchange does not lead to a net flow of energy in one direction.

182 By similar arguments, the maximally unclean situation ($\delta = -1$) produces an identical bias in
 183 the clockwise direction. More generally, each correctly matched pair of memory and reference bits
 184 generates a bias toward CCW rotation, while each mismatched pair generates a bias toward CW
 185 rotation. Hence, over many interaction intervals, our ring (in the absence of an external load) produces
 186 a rotational bias whose direction is CCW for $\delta > 0$ and CW for $\delta < 0$. The strength of the bias is
 187 quantified by $|\delta|$.

188 Let us now assume $\delta > 0$ and imagine that we add an external load, $\Gamma > 0$. If the load is
 189 sufficiently small then the bias generated by the ring will continue to produce CCW rotation (albeit at
 190 a lower rate than if the load were absent) thereby lifting the mass against gravity. In this situation the
 191 ring settles into a steady state in which energy is systematically withdrawn from the heat bath (gas)
 192 and delivered to perform mechanical work.

193 3. Operational Modes of the Programmable Demon

194 More generally, the behavior of our ring depends on four parameters that we consider to be
 195 tunable: the memory cleanliness δ , the bath temperature T , the external load Γ , and the duration of the
 196 interaction interval τ^{int} .¹ Depending on the values of these four parameters, the machine operates in
 197 one of three different modes – as an information engine, an information eraser or a dud. In the limit
 198 $\tau^{\text{int}} \rightarrow \infty$ the model becomes analytically solvable (see Sec. 4.2), and its behavior is determined by the
 199 dimensionless parameters δ and $\beta\Gamma$, where $\beta = (k_B T)^{-1}$, as illustrated by the phase diagram shown in
 200 Figure 10. We now discuss each mode separately.

201 3.1. Engine mode

As mentioned in Sec. 2.3, for $\delta > 0$ and sufficiently small $\Gamma > 0$, the ring is able to convert energy
 drawn from the heat bath into work against the external load, thereby operating as an engine. In the
 limiting case $\delta = 1$, each incoming bit is matched perfectly to its reference bit, but this is no longer the
 case with the outgoing bits:

$$\delta' \equiv P_{\text{out}}(\text{same}) - P_{\text{out}}(\text{diff}) < 1 \quad (5)$$

More generally, when $\delta > 0$ and the ring operates in the engine mode we have

$$\delta > \delta' > 0 \quad (6)$$

202 as CCW rotation tends to generate mismatches between memory bits and reference bits. Eq. 6 indicates
 203 that there is greater uncertainty – less correlation with the reference bits – in the outgoing memory
 204 sequence than in the incoming sequence: $\Delta S_L > 0$. In effect, the decrease of thermodynamic entropy
 205 associated with the continual withdrawal of energy from the heat bath, is compensated by the increase
 206 of the Shannon entropy of the memory register. Our ring thus operates as an *information engine*, with a
 207 clean sequence of incoming bits serving as a thermodynamic resource that allows the system to convert
 208 heat from the bath into work against the load, without violating the second law of thermodynamics.

¹ All other parameters, such as the mass and density of gas particles, the length of the paddles, etc., are fixed in our model.

209 In the non-programmable engine of Ref. [1], an incoming sequence of 0's is converted into a
210 mixture of 0's and 1's. It is natural to view this conversion as a process of *writing* information to the bit
211 sequence. The outgoing pattern encodes information about the history of the ring, as outgoing 1's are
212 correlated with CCW rotation during the corresponding interaction intervals. In the present model, by
213 contrast, both the incoming and the outgoing sequences are mixtures of 0's and 1's. We can still view
214 this as a process of writing information, provided this information is defined relative to the reference
215 bits: a mismatch between an outgoing memory bit and its reference bit indicates a likelihood that CCW
216 rotation occurred during that bit's interaction interval. Alternatively, for the present model we might
217 view the incoming sequence as containing information (e.g. the binary digits of π), which is "digested"
218 by the ring as it rectifies thermal fluctuations to generate work. Regardless of whether we interpret the
219 ring as writing information onto a clean memory sequence, or digesting information contained in that
220 sequence, the net result is the same: when the ring acts as an engine, the outgoing bit sequence is more
221 disordered than the incoming one, $\Delta S_L > 0$.

222 *3.2. Eraser mode*

223 Now let us consider what happens when (1) the incoming bit sequence is maximally unclean
224 ($\delta = 0$) i.e. the incoming bits are uncorrelated with the reference bits, and (2) a large mass produces a
225 strong external load in the CW direction, $\Gamma > 0$. During a given interaction interval the mass drops as
226 far as it can, producing CW rotation of the ring until the interacting paddle (bit) is pinched between
227 one of the blades of the ring and the rigid engaging gate associated with that paddle, as illustrated
228 in Figure 5. If the reference bit is in state $\bar{0}$, then the engaging gate is located at $\theta = 0$ and the paddle
229 that encodes the memory bit is forced by the CW rotation into a state $0 < \theta_B \ll \pi$, corresponding to
230 the binary state 0 (Figure 5a). Conversely, if the reference bit is in state $\bar{1}$, then the engaging gate is
231 situated at $\theta = \pi$ and the paddle is forced into a state $\pi < \theta_B \ll 2\pi$, corresponding to the binary state
232 1 (Figure 5b). In either case, at the end of the interaction interval the memory bit matches the reference
233 bit ($0\bar{0}$ or $1\bar{1}$).

234 In this mode of operation, the ring harnesses the gravitational energy of the falling mass to
235 decrease the randomness in the bit sequence. Specifically, $\Delta S_L = -\log 2 < 0$, since the outgoing bits
236 are perfectly matched to the reference bits; see Eqs. 3 and 4. This decrease in the Shannon entropy of
237 the memory bit stream is compensated by an increase in the thermodynamic entropy of the heat bath,
238 as the energy from the falling mass is ultimately dissipated into the bath.

239 The model developed in Ref. [1] displayed a similar mode of operation, with a falling mass
240 converting an incoming sequence of 0's and 1's into an outgoing sequence of 0's. We referred to this
241 mode as *Landauer's eraser*, as it illustrated Landauer's principle that heat must be dissipated in order to
242 erase information. We will use the same terminology to refer to the mode of operation just described
243 for the present model, although *Landauer's copier* might be more apt in this context, since the net effect
244 is that the preprogrammed reference sequence is copied onto the memory bits.

245 *3.3. Dud mode*

246 It is useful to think of a clean memory ($\delta = 1$) as a thermodynamic resource, just as a mass that
247 has been lifted against gravity is a thermodynamic resource. The engine and eraser modes represent
248 an interplay between these two resources, in which one resource is depleted in order to increase the
249 other. Thus in the engine mode, the cleanliness of the memory bit stream is diminished in order to
250 raise the mass against gravity, while in the eraser mode the gravitational potential energy of the mass
251 is spent in order to obtain a clean memory. When the incoming bit stream is sufficiently clean and
252 the external load (mass) is sufficiently small, the ring acts as an engine, whereas when the incoming
253 bits are disordered and the mass is large, it acts as an eraser. For intermediate values of δ and Γ , the
254 ring might act either in the engine mode or in the eraser mode, depending on the values of other
255 parameters such as the interaction time τ^{int} and the temperature and density of the surrounding gas.

Figure 5. Eraser (Copier) Mode. Under a strong external load, CW rotation occurs until the bit becomes pinched between the engaging gate (shown as a blue dot situated on the gray dashed line) and a blade of the ring. The binary state of the memory bit then matches that of the reference bit.

256 There is also a third possibility: the mass drops while the disorder of the memory increases,
 257 $\Delta S_L > 0$. We call this the *dud* mode, since it represents a wasteful depletion of both thermodynamic
 258 resources. This mode arises either if the incoming memory sequence contains a surplus of mismatches
 259 over correct matches, $\delta < 0$, and the load $\Gamma > 0$ is not sufficiently strong to produce an even greater
 260 surplus of correct matches in the outgoing sequence – this is illustrated by the white area region
 261 appearing in the second quadrant in Fig. 10 – or if a surplus of correct matches in the incoming
 262 sequence is not sufficient to raise the mass against gravity, while simultaneously the load $\Gamma > 0$ is not
 263 sufficient to counter the tendency of the bits to randomize – this is illustrated by the narrow white
 264 tongue appearing in the first quadrant in Fig. 10.

265 In the dud mode, the Shannon entropy of the memory sequence increases, $\Delta S_L > 0$, and the
 266 thermodynamic entropy of the surrounding gas increases, as it absorbs the energy of the falling mass.

267 4. Numerical and analytical results

268 4.1. Numerical simulations

269 We performed numerical simulations of our contraption immersed in a dilute gas, modeling the
 270 collisions between the gas particles and the paddles and blades as Poisson processes. The probability
 271 per unit time that a gas particle strikes a particular location of a given paddle or blade is determined
 272 by the temperature T and density of the gas, the angular velocity of the paddle or blade, and the
 273 radial location of the point of collision. During a given interaction interval we simulate the dynamics
 274 of the ring and the interacting bit as a sequence of events. Each event is a blade-paddle collision, a
 275 paddle-gate collision, or a collision of a gas particle with either the paddle or the blade. After each
 276 event the angular velocity of the blade and/or paddle is appropriately updated, and the next event is
 277 generated stochastically using the Gillespie algorithm [48]. At the end of the interaction interval the
 278 machine undergoes a bit renewal, in which the old interacting bit is replaced by a new one, whose
 279 angular location θ_B and velocity $\dot{\theta}_B$ are assigned randomly according to the values of δ and T .

280 Fig. 6 shows eleven angular trajectories of the angular rotation of the ring, $\theta_D(t)$, illustrating
 281 the engine mode and the dud mode. The simulations were performed at temperature $k_B T = 1$ and
 282 load $\Gamma = 0.05 k_B T$, for eleven different values of the cleanliness of the incoming memory bits, δ . Each
 283 simulation lasted for 2000 interaction intervals, representing 2000 incoming bits, with $\tau^{\text{int}} = 20$.
 284 The gates were prepared in the repeating binary sequence "...0101101011...". In agreement with the
 285 arguments of Sec. 3, when δ is close to 1, the ring undergoes systematic counterclockwise rotation

286 and the ring performs work against the external load, lifting the mass against gravity (engine mode).
 287 For less clean incoming sequences, with values $\delta \leq 0.6$, the ring can no longer overcome the external
 288 torque and rotates clockwise (dud mode).

Figure 6. Trajectories of the ring's angular orientation for different values of δ at fixed load $\Gamma = 0.05 k_B T$, with a bit renewal rate of 1 bit per 20 seconds ($\tau^{\text{int}} = 20$). For $\delta = 1$ and $\delta = 0.8$ the ring performs work against the clockwise external torque, while for the other values of δ , the external load dominates and work is dissipated into the heat bath.

289 To illustrate the eraser mode, Fig 7 shows four trajectories simulated as in Fig. 6, except that we
 290 fix $\delta = 0.2$ and vary the external torque: $\Gamma[k_B T] = 0.1, 0.15, 0.2, 0.25$. As expected, the stronger the
 291 load, the faster the ring rotates in the CW direction, leading to more energy dissipated into the heat
 292 bath. We find that for $\Gamma \geq 0.15 k_B T$, the outgoing sequence is cleaner than the incoming sequence of
 293 bits hence the ring functions as an eraser.

294 4.2. Analytical results for the slow-moving limit

295 Let us now consider the limit of long interaction time $\tau^{\text{int}} \rightarrow \infty$. In this limit the behavior of the
 296 ring during one interaction interval becomes uncorrelated with its behavior in the next interval. The
 297 average work performed by the ring, W , and the Shannon entropy change of the memory tape, ΔS_L ,
 298 can then be computed analytically and are given by Eqs. 7 and 11 below. We now sketch the approach
 299 that is taken to obtain these results, leaving the technical details to the Appendix.

300 Letting (θ_B, θ_D) denote the instantaneous configuration of the composite system – the interacting
 301 bit and the ring – we depict the relevant features of configuration space in Figure 8, with bold solid
 302 lines representing hard wall boundaries. Note that the boundary conditions depend on the state of the
 303 reference bit, $\bar{0}$ or $\bar{1}$, through the placement of the engaging gate at $\theta = 0$ or $\theta = \pi$.

304 During a given interaction interval, the ring and interacting bit undergo random collisions with
 305 the surrounding bath particles, while the external load imposes a potential energy contribution $\Gamma \theta_D$ that
 306 generates a CW torque on the ring. The ring and bit are confined within a single parallelogram-shaped
 307 cell in configuration space (see Fig. 8), and the composite system (θ_B, θ_D) has sufficient time to relax to
 308 equilibrium within this cell. Hence, if the composite system begins within a particular cell at the start
 309 of an interaction interval, then at the end of the interval its statistical state is given by a Boltzmann
 310 distribution restricted to that cell.

311 Let us suppose that during the initial interaction interval the composite system is found in one
 312 of the two shaded cells depicted in Fig. 8, depending on the state of the reference bit. Let $p_0^{\text{eq}}(\theta_B, \theta_D)$
 313 and $p_1^{\text{eq}}(\theta_B, \theta_D)$ denote the equilibrium distributions restricted to these two cells. The correlations
 314 between θ_B and θ_D differ in these two distributions, but if we integrate either distribution over θ_B , then
 315 the resulting marginal equilibrium distributions for θ_D are identical: $p_D^{\text{eq}}(\theta_D) = \int d\theta_B p_0^{\text{eq}} = \int d\theta_B p_1^{\text{eq}}$.

Figure 7. Trajectories of the ring's angular orientation for different values of CW external torque Γ , at fixed $\delta = 0.2$. For each trajectory, the ring rotates in the CW direction and thus the energy of the falling mass is dissipated into the heat bath. With increasing external torque ($\Gamma = 0.1k_B T, 0.15k_B T, 0.2k_B T, 0.25k_B T$), the cleanliness of the outgoing sequence of bits increases as well: $\delta' = 0.1884, 0.2694, 0.4062, 0.4742$. For $\Gamma \geq 0.15k_B T$ we obtain $\delta' > 0.2$ hence the ring acts as an eraser, removing randomness from the incoming sequence.

Figure 8. The configuration space of the ring and interacting bit. The tilted lines at $\theta_D - \theta_B = n\pi$ depict hard boundaries associated with a collision between the interacting bit paddle and either blade of the ring. The vertical solid lines correspond to the location of the engaging gate that blocks the paddle. This gate is located at $\theta = 0 = 2\pi$ when the reference bit is set to $\bar{0}$, panel (a), or at $\theta = \pi$ when the reference bit is set to $\bar{1}$, panel (b). The dashed lines in (b) represent periodic boundary conditions. The hard wall boundaries partition the configuration space into parallelogram-shaped *cells*, which are numbered as shown, with cell #0 shaded in each panel.

316 The distribution p_D^{eq} has support in the region $-\pi \leq \theta_D \leq 2\pi$. In the absence of an external load, 317 both p_0^{eq} and p_1^{eq} are uniform distributions within the shaded regions, and $p_D^{\text{eq}}(\theta_D)$ has the shape of 318 an isosceles trapezoid. In the opposite limit of a strong external load $\Gamma \gg k_B T$, $p_D^{\text{eq}}(\theta_D)$ is strongly 319 concentrated near $\theta_D = -\pi$ (due to the Boltzmann factor $e^{-\beta\Gamma\theta_D}$), as the memory bit paddle becomes 320 pinched between one of the ring's blades and the engaging gate.

321 At the start of the next interaction interval, the memory and reference bits are replaced, or *renewed*, 322 by the arrival of a new paddle and engaging gate. The location of the engaging gate now reflects 323 the new reference bit, $\bar{0}$ or $\bar{1}$. The state of the new memory bit, b , either matches or mismatches the 324 reference bit, with a probability determined by the value of δ . We can treat the configuration of the 325 incoming memory bit as a random, uniform sample either from the range $0 \leq \theta_B < \pi$ if $b = 0$, or 326 from $\pi \leq \theta_B < 2\pi$ if $b = 1$. This renewal process instantaneously maps the final distribution of the 327 composite system at the end of one interaction interval, into a new initial distribution at the beginning 328 of the next interval, as the variable θ_B now refers to the new memory bit rather than the old one. This 329 mapping depends on the state of the new bit, as illustrated in Figure 9. At the start of a new interaction 330 interval, the bit and ring configurations, θ_B and θ_D , are uncorrelated.

331 If the machine (bit + ring) is found in cell $\#k$ during one interaction interval, and if the new, 332 incoming memory and reference bits are correctly matched, then during the next interval it will be 333 found in one of four possible cells, corresponding to a displacement $\Delta k = -1, 0, 1$ or 2 , as illustrated 334 in Figs. 8 and 9 for $k = 0$. The probability distribution for Δk is determined by considering how the 335 equilibrium distribution restricted to the initial cell ($\#k$) is redistributed by the mapping that occurs 336 upon bit renewal. By similar arguments, if the incoming memory and reference bits are mismatched, 337 then the displacement is $\Delta k = -2, -1, 0$ or 1 .

338 The process then repeats itself over the next interaction interval: the probability distribution 339 relaxes to equilibrium within each cell, and then renewal occurs when the new memory and reference

Figure 9. The shaded regions indicate the distribution of the composite system right after renewal, for the case when the memory bit is correctly matched with the reference bit. For purpose of illustration, we assume that just before the renewal the system was found in either one of the shaded cells shown in Fig. 8, both corresponding to #0. In (a), the new memory and reference bits are in the combined state $(0\bar{0})$, whereas (b) corresponds to the combination $(1\bar{1})$. The marginal probability distribution of the ring's angle, $p_D^{\text{eq}}(\theta_D)$, is unaffected by the renewal mapping.

340 bits arrive. Thus, from one interaction interval to the next, we can treat the dynamics of the ring
 341 as a discrete time random walk along a lattice of cells, with each step Δk sampled randomly from
 342 a distribution that depends on whether the incoming memory and reference bits are matched or
 343 mismatched. The net result is that Δk can range from -2 to $+2$, with probabilities determined by the
 344 values of δ and Γ . On average, each positive (negative) unit increment in k corresponds to CCW (CW)
 345 rotation of the ring by half a circle.

Following the considerations discussed above, we have computed the probability distribution for Δk analytically, and from these results we have determined the average work performed by the ring, per interaction interval (see Appendix A for details):

$$W = \frac{\pi\beta\Gamma\delta - \pi\beta\Gamma[3\coth(\pi\beta\Gamma) + \text{csch}(\pi\beta\Gamma)] + 4}{2\beta} \quad (7)$$

In the limit of a weak external load, Eq. 7 gives

$$W \approx \delta\pi\Gamma/2 \quad (0 < \Gamma \ll k_B T) \quad (8)$$

and the ring acts as an engine when $\delta > 0$, in agreement with the discussion in Sec. 2.3. In the opposite limit of strong external load we get

$$W \approx (\delta - 3)\pi\Gamma/2 \quad (\Gamma \gg k_B T) \quad (9)$$

346 hence $W < 0$, as expected. As a consistency check on Eq. 7, both of the limiting cases represented by
 347 Eqs. 8 and 9 can be verified by directly calculating the average displacement of θ_D per period, resulting
 348 from the renewal mapping illustrated in Figs. 8 and 9.

Figure 10. The phase diagram of the programmable Maxwell's demon in the limit $\tau^{\text{int}} \rightarrow \infty$. Here the behavior of the ring depends only on the sequence cleanliness, δ , and the external torque scaled by bath temperature, $\beta\Gamma$. For finite values of τ^{int} , the behavior of the ring depends separately on three quantities β , Γ and δ .

Additionally, we can compute the fractions of bit-gate agreement and disagreement in the outgoing tape:

$$P_{\text{out}}(\text{same}) = \frac{e^{\Gamma\pi\beta}}{e^{\Gamma\pi\beta} + 1}, \quad P_{\text{out}}(\text{diff}) = \frac{1}{e^{\Gamma\pi\beta} + 1}. \quad (10)$$

In the limit of a strong external load ($\Gamma \gg k_B T$) virtually all outgoing bits will be forced to match the reference bits, as each bit paddle becomes pinched between then ring's blade and the engaging gate; see Sec. 3.2. Per interaction period, the change of the Shannon entropy of the memory tape with respect to the gate is

$$\begin{aligned} \Delta S_L = & \frac{1-\delta}{2} \log \left(\frac{1-\delta}{2} \right) + \frac{1+\delta}{2} \log \left(\frac{1+\delta}{2} \right) \\ & - \frac{e^{\pi\beta\Gamma}}{e^{\pi\beta\Gamma} + 1} \log \left(\frac{e^{\pi\beta\Gamma}}{e^{\pi\beta\Gamma} + 1} \right) - \frac{1}{e^{\pi\beta\Gamma} + 1} \log \left(\frac{1}{e^{\pi\beta\Gamma} + 1} \right) \end{aligned} \quad (11)$$

where recall that the variable $L = B \text{Exy} G$ is the Boolean equality between the state of the bit and the state of the gate (see Sec. 2.2).

Combining Eqs. 7 and 11, we obtain (see Appendix B for details)

$$\Delta S_L - \frac{W}{k_B T} = D_{KL} [P_{in} | P_{out}] + \frac{\pi\beta\Gamma}{\tanh(\pi\beta\Gamma/2)} - 2 \quad (12)$$

where $D_{KL} \geq 0$ is the Kullback-Leibler divergence [49] between the incoming and outgoing bit distributions. Since $x/\tanh(x) > 1$ for all $x \neq 0$, Eq. 12 implies

$$k_B \Delta S_L - \frac{W}{T} \geq 0 \quad (13)$$

which is a strict inequality when $\Gamma \neq 0$. Because the work W is equal to the average energy extracted from the heat bath, per bit, the term $-W/T$ represents the net change in the thermodynamic entropy of bath. As a result, Eq. 13 can be viewed as a statement of the second law of thermodynamics: the sum of the entropy changes of the bit stream and heat bath must be non-negative. Notice that this interpretation relies on treating the information content of the bit stream (multiplied by k_B) as a genuine thermodynamic entropy, on par with the Clausius entropy.

Eq. 13 suggests natural definitions of the machine's thermodynamic efficiency in both the engine and the eraser mode. When the ring functions as an eraser, we have

$$W < k_B T \Delta S_L < 0 \quad (14)$$

and the efficiency is defined as

$$\eta_{\text{eraser}} = \frac{k_B T \Delta S_L}{W} < 1 \quad (15)$$

When the ring functions as an engine,

$$k_B T \Delta S_L > W > 0 \quad (16)$$

and the efficiency is defined as

$$\eta_{\text{engine}} = \frac{W}{k_B T \Delta S_L} < 1 \quad (17)$$

³⁵⁷ When the ring functions in the dud mode, $W < 0 < k_B T \Delta S_L$.

³⁵⁸ In Fig. 11 we plot the thermodynamic efficiency over the phase diagram of the machine. By
³⁵⁹ definition $\eta > 0$ within the regions corresponding to the engine and eraser modes, but η drops to
³⁶⁰ zero at the boundaries of these regions, where the ring becomes a dud. For example, a point on the
³⁶¹ boundary of the engine mode, with $\delta, \beta\Gamma > 0$, represents a stalled state. Here the ring generates just
³⁶² enough CCW torque to match the CW torque exerted by the external load (hence $W = 0$), nevertheless
³⁶³ there is a positive rate of entropy generation in the bit stream ($\Delta S_L > 0$). If the load Γ is decreased by a
³⁶⁴ small amount, then the ring will produce a slight CCW rotation, resulting in an engine with very low
³⁶⁵ efficiency.

Figure 11. Efficiency plot of the programmable demon, obtained analytically in the limit $\tau^{\text{int}} \rightarrow \infty$. Since efficiency is defined only for the eraser and engine modes, the dud region is left blank.

³⁶⁶ **4.3. Second law of thermodynamics in the slow moving limit**

³⁶⁷ We have obtained Eq. 13 from our exact solution of the dynamics in the slow-moving limit, but
³⁶⁸ the result has the character of a generalized, information-theoretic second law of thermodynamics (as
³⁶⁹ already mentioned), and its validity may extend to finite values of τ^{int} . While it is difficult to establish
³⁷⁰ this validity from first principles, we can make some progress by ignoring correlations (of any sort)

371 from one interval to the next, as we do in the following statistical treatment in which the variables B
 372 and G are treated as *information-bearing degrees of freedom* [50].

373 At the start of an interaction interval, let $P_{BG}^{in}(b, g)$ denote the joint probability to find the memory
 374 bit in state $b \in \{0, 1\}$ and the reference gate in state $g \in \{\bar{0}, \bar{1}\}$, and let $P_B^{in}(b)$ and $P_G^{in}(g)$ denote the
 375 corresponding marginal distributions. Let S_{BG} , S_B and S_G denote the Shannon entropies of these
 376 distributions.

Then

$$S_{BG}^{in} = S_B^{in} + S_G^{in} - I_{BG}^{in} \quad (18)$$

where

$$I_{BG}^{in} = \sum_{b,g} P_{BG}^{in} \log \frac{P_{BG}^{in}}{P_B^{in} P_G^{in}} \geq 0 \quad (19)$$

is the *mutual information* [51] between the bit and gate states. Defining similar quantities for the outgoing states, the net change in the combined entropy over one interaction interval is

$$\begin{aligned} \Delta S_{BG} &= \Delta S_B + \Delta S_G - \Delta I_{BG} \\ &= \Delta S_B - \Delta I_{BG} \end{aligned} \quad (20)$$

377 where $\Delta S_{BG} = S_{BG}^{out} - S_{BG}^{in}$, etc. Since the state of the gate remains fixed we have $\Delta S_G = 0$, whereas
 378 both S_B and I_{BG} typically change during the interaction interval.

We have used the variables B and G to specify the combined state of a memory and reference bit, but we could equally well specify this state using the variables L and G , leading to

$$\Delta S_{BG} = \Delta S_{LG} = \Delta S_L - \Delta I_{LG} \quad (21)$$

379 where ΔS_{LG} , ΔS_L and I_{LG} are defined as above, but with L in place of B .

The Hamiltonian analysis of Ref. [28] (see in particular Eq. 47 therein) suggests that the change in the Shannon entropy of the information-bearing degrees of freedom B and G obeys a generalized second law of thermodynamics: $W/k_B T \leq \Delta S_{BG}$. Combining with Eq. 21 gives us

$$\frac{W}{k_B T} \leq \Delta S_L - \Delta I_{LG} = \Delta S_L - I_{LG}^{out} \quad (22)$$

380 Here we have used our assumption that incoming mismatches are statistical uncorrelated with the
 381 state of the gate (Sec. 2.2) to set $I_{LG}^{in} = 0$. Since mutual information is non-negative, Eq. 22 immediately
 382 implies Eq. 13, but note that Eq. 22 provides a stronger bound than Eq. 13. In effect, if correlations
 383 develop between the reference gate G and the logical state L , then these correlations represent an
 384 “unused” information-thermodynamic resource. In the slow-moving limit, these correlations vanish
 385 since the demon and bit fully equilibrate, hence Eq. 22 reduces to Eq. 13 in that limit.

386 5. Our machine as a feedback controlled device

387 In previous sections we have presented our model as an autonomous system, whose various
 388 components (paddles, gas particles, etc.) evolve without external interference. With a slight
 389 modification our model can serve to illustrate a *non-autonomous* device: a machine that is manipulated
 390 via measurement and feedback. In this non-autonomous interpretation, the ring can again operate
 391 as an engine that lifts a mass against gravity, as we describe in Sec. 5.1. We then show how the
 392 inequality given by Eq. 22 for the autonomous case, can be translated into an inequality that applies
 393 to non-autonomous measurement and feedback, Eq. 26 below. Finally, in Sec. 5.3 we show how our
 394 model can be modified to act as a non-autonomous device that uses the energy of a dropping mass to
 395 write a desired target sequence to a stream of bits.

Figure 12. A non-autonomous version of our model. The snapshot is taken right at the time of bit renewal. The agent observes the state of the new bit (state 1) and simultaneously sets the gate $\bar{1}$ to be effective. Thus the new bit can switch state only through the unblocked gate $\bar{0}$. In this illustration, the agent's measurement is faithful and thus the ring is able to work in the engine mode.

396 5.1. *Feedback controlled engine*

397 Consider a setup that is essentially the same as that described in Sec. 2, but without the sequence
 398 of rigid reference gates (the blue L-shaped bars in Fig. 3). In their place is a single, switchable gate
 399 that can be set to block either one of the two gaps (in the red blocking bars) positioned at the vertical
 400 location of the ring. We will say that the gate is in the $\bar{0}$ state when it blocks the gap at $\theta = 0$, and in
 401 the $\bar{1}$ state when it blocks the gap at $\theta = \pi$; the latter case is depicted in Fig. 12.

402 Throughout this section we assume that the incoming bits arrive in a fully randomized sequence,
 403 with 0's and 1's distributed equally. We introduce an external agent who performs measurement and
 404 feedback on these bits; see Fig. 12. The agent observes each new bit as it arrives, and at the moment
 405 of bit renewal (when the incoming bit becomes the interacting bit) the agent sets the switchable gate
 406 accordingly: if it observes the incoming bit to be in state 0 (or 1), it sets the switchable gate to state $\bar{0}$
 407 (or $\bar{1}$).

408 If the agent performs error-free measurements, faithfully identifying the state of each incoming
 409 bit, then from the perspective of the ring the situation is equivalent to the case $\delta = 1$ analyzed in Sec. 2.
 410 Namely, the blocked gate is matched with the state of the incoming bit so as to produce, during each
 411 interaction interval, a statistical bias in favor of CCW rotation. In the long run, this bias can cause a
 412 small mass to be lifted against gravity, systematically extracting energy from the heat bath and thereby
 413 reducing its entropy. Since (by assumption) the incoming bits arrive in a fully randomized sequence,
 414 the decrease in the entropy of the bath cannot be "paid for" by increasing the Shannon entropy of the
 415 bits. Rather, the model illustrates how an external agent, by performing measurement and feedback,
 416 can rectify fluctuations to produce an apparent violation of the second law of thermodynamics. Of
 417 course there is no real violation, as the physical nature of the agent is not being taken into account –
 418 like Maxwell, we have effectively inserted a "magical creature" into our model.

419 We further generalize this scenario to include the possibility of measurement errors. For each
 420 incoming bit, let ϵ denote the probability that the agent misidentifies the bit state and therefore blocks
 421 the "wrong" gate. This situation is equivalent to the one analyzed in Sec. 3.1, with $\delta = 1 - 2\epsilon$. For
 422 sufficiently small error rate ϵ and load Γ , the machine may still lift the mass against gravity, despite the
 423 measurement errors.

424 The non-autonomous model described in this section is similar to Maxwell's original thought
 425 experiment, and even more so to the Szilard engine [33], in which an agent determines whether a
 426 gas particle is within the left or right half of a box, then appropriately attaches a mass that can be
 427 lifted by the expansion of the single-particle gas. In our model, the "expansion" of a bit paddle from
 428 the half-circle to the full circle during each interaction interval plays the role of the expansion of the
 429 single-particle gas in the Szilard model. Note, however, that in the case of the Szilard engine the
 430 same gas particle is recycled from one iteration of the measurement-and-feedback process to the next,
 431 whereas our model uses a sequence of "gas particles" (incoming bits) that can act as a memory register.
 432 This allows our model to act not only as an engine but also as a device that writes information, as we
 433 discuss in Sec. 5.3.

434 5.2. The second law of thermodynamics with feedback control

435 We have noted the equivalence between the measurement-and-feedback scenario described in
 436 Sec. 5.1 (with error rate ϵ) and the autonomous engine of Sec. 3.1 (with $\delta = 1 - 2\epsilon$). Let us use this
 437 equivalence to obtain a second law inequality for the measurement-and-feedback process.

As before, let $P_{BG}^{in}(b, g)$ denote the joint probability distribution describing the initial state of the bit and blocked gate – just after the agent has measured the bit and set the gate accordingly. During the interaction interval, $0 < t < \tau^{int}$, the machine operates autonomously, hence (see Sec. 4.3)

$$\frac{W}{k_B T} \leq \Delta S_{BG} = \Delta S_G + \Delta S_B - \Delta I_{BG} \quad (23)$$

Since the gate state G does not change during the interaction interval, $\Delta S_G = 0$. Also, since the fully randomized incoming bit stream contains equal populations of 0's and 1's, the same will be true (by symmetry) of the outgoing bit stream, hence $S_B^{in} = S_B^{out} = \log 2$, and $\Delta S_B = 0$. We thus get

$$\frac{W}{k_B T} \leq -\Delta I_{BG} = I_{BG}^{in} - I_{BG}^{out} \quad (24)$$

The initial mutual information is simply the information gained by the measurement process:

$$I_{BG}^{in} = I_{meas} = \log 2 + (1 - \epsilon) \log(1 - \epsilon) + \epsilon \log \epsilon \quad (25)$$

The final mutual information quantifies the degree to which B and G remain correlated at the end of the interval; we will refer to this value as the *residual* information: $I_{res} = I_{BG}^{out}$. We thus have

$$\frac{W}{k_B T} \leq I_{meas} - I_{res}, \quad (26)$$

i.e. the extracted work W is bounded by the amount of information gathered during the measurement, minus the amount "left over" at the end of the interval. Hence the gathered information is a thermodynamic resource, and the difference $I_{meas} - I_{res}$ represents the amount of that resource that is consumed, per interaction interval. Since $I_{res} \geq 0$, Eq. 26 immediately implies the weaker bound

$$\frac{W}{k_B T} \leq I_{meas}. \quad (27)$$

438 Eq. 27 was originally derived within the framework of stochastic thermodynamics by Sagawa
 439 and Ueda in Refs. [26,27], and Eq. 26 was subsequently obtained by the same authors in Refs. [29,52].
 440 We also note that the net change in the mutual information between the bit and the gate, ΔI_{BG} , can be
 441 interpreted as the integrated *information flow*, within the bipartite approach developed by Horowitz and
 442 Esposito [30]. This information flow is negative (hence $I_{meas} - I_{res} > 0$), as information is consumed
 443 to extract energy to lift the mass.

444 5.3. Feedback controlled information recorder

445 In the eraser mode discussed in Sec. 3.2, our autonomous machine removes randomness from
446 the incoming bit stream, replacing it with a preprogrammed sequence encoded in the reference gates.
447 In the present context of an externally manipulated machine, let us imagine that the agent desires
448 to write a particular target sequence, e.g. 011010 · · · , to the bit stream. The agent does not perform
449 measurements on the incoming bits, but as each bit arrives the agent sets the switchable gate to match
450 the corresponding element of the target sequence. Then, as in Sec. 3.2, the CW torque produced by the
451 gravitational pull of the mass produces a tendency to set the state of the interacting bit to match the
452 desired target value, through the “pinching” mechanism illustrated in Fig. 5. The fidelity of the writing
453 process increases with the torque Γ generated by the gravitational force on the mass, and the energy of
454 the dropping mass is dissipated into the heat bath.

455 6. Concluding remarks

456 In this paper we have presented a model of a programmable, mechanical Maxwell’s demon,
457 that can be interpreted either as an autonomous device, as described in Sections 2 - 4, or as a
458 non-autonomous device manipulated by external measurement and feedback control, as in Section 5.
459 For these distinct interpretations, we have obtained distinct forms of the second law of thermodynamics,
460 represented by Eqs. 22 and 26. While these results have been obtained within the specific context of
461 our model, it would be useful to investigate whether they point to more general thermodynamic laws,
462 in situations involving both autonomous and non-autonomous (i.e. feedback-controlled) devices. For
463 instance, as indicated in Sec. 5.2, the inequalities given by Eqs. 26 and 27 have been obtained previously
464 under assumptions of bipartite, Markovian dynamics [26,27,29,30,52]. By contrast, we have obtained
465 these results within a Newtonian model of colliding particles and paddles, which suggests that they
466 might be derived more generally within a classical, Hamiltonian framework.

467 Additionally, we have obtained analytical results for the work delivered by our device, Eq. 7,
468 and the change in the Shannon entropy of the bits, Eq. 11, in the limit of a slowly-moving stream
469 of bits, $\tau^{\text{int}} \rightarrow \infty$. For finite τ^{int} , the interactions between the bits and the demon may induce
470 statistical correlations among the outgoing bits. Such correlations, which could in principle act as
471 a thermodynamic resource, have not been considered in our analysis. It would be interesting to
472 investigate how these correlations might affect the inequalities that we have derived.

473 **Acknowledgments:** We gratefully acknowledge financial support from the U.S. Army Research Office under
474 contract number W911NF-13-1-0390 (CJ). ZL acknowledge useful discussions with Zhixin Lu, Dibyendu Mandal,
475 Sebastian Deffner, and David Sivak.

476 Appendix Work delivered per interaction interval.

477 To compute the mean work that our device delivers to lift a mass against gravity, we must
478 compute the mean angular displacement of the ring per interaction interval. This displacement can
479 be determined by considering the transition from the end of an interaction interval (see Fig. 8) to
480 the beginning of the next interaction interval (see Fig. 9). Recall that during a particular interaction
481 interval, the composite system is confined within a single cell in (θ_B, θ_D) -space, as illustrated by the
482 shaded region in Fig. 8(a). At the moment of bit renewal the value of θ_B changes suddenly, hence the
483 system may find itself in a different cell immediately after bit renewal, as illustrated in Fig. 9(a). We
484 characterize this transition by the change Δk in the cell index. At a coarse-grained level the evolution
485 of the system from one interval to the next becomes a random walk of discrete jumps in k -space.

486 Here we compute the probability of the jumps conditioned on the agreement or disagreement
487 between the state of the bit and its corresponding gate. At the moment of bit renewal, the state of the
488 system can either remain in the same cell ($\Delta k = 0$), it can jump up or down by one cell ($\Delta k = \pm 1$), or up
489 or down by two cells ($\Delta k = \pm 2$). Note however that the value $\Delta k = +2$ is possible only if the incoming
490 bit matches the incoming gate (as in Fig. 9), and the value $\Delta k = -2$ can occur only if the bit and gate
491 are mismatched. To illustrate how to compute the probabilities of these various events, let us imagine

492 that immediately after renewal, both the incoming bit and its reference gate are in the 0 state. Then
 493 the probability distribution for the system is partitioned among the four shaded regions appearing in
 494 Fig. 9(a), each of which corresponds to a particular value of Δk , and the distribution within each of
 495 these cells is inherited from the equilibrium distribution just prior to bit renewal (Fig. 8). By integrating
 496 over the distribution within each region, and then summing over all possible combinations of incoming
 497 bit and gate, we obtain the following results.

When the incoming bit agrees with its gate (e.g. bit=1 and gate=1 or bit=0 and gate=0), we have

$$P_{+2}^{\text{same}} \equiv P_{+2}^{0,0} = P_{+2}^{1,1} = \frac{\pi\beta\Gamma + e^{\pi\beta\Gamma}(\pi\beta\Gamma - 2) + 2}{\pi\beta\Gamma(e^{\pi\beta\Gamma} - 1)^2(e^{\pi\beta\Gamma} + 1)} \quad (\text{A1})$$

$$P_{+1}^{\text{same}} \equiv P_{+1}^{0,0} = P_{+1}^{1,1} = \frac{e^{\pi\beta\Gamma}[\pi\beta\Gamma(e^{\pi\beta\Gamma} - 3) + 2] - 2}{\pi\beta\Gamma(e^{\pi\beta\Gamma} - 1)^2(e^{\pi\beta\Gamma} + 1)} \quad (\text{A2})$$

$$P_{\text{stay}}^{\text{same}} \equiv P_{\text{stay}}^{0,0} = P_{\text{stay}}^{1,1} = \frac{e^{\pi\beta\Gamma}[\pi\beta\Gamma + e^{\pi\beta\Gamma}(-3\pi\beta\Gamma + 2e^{\pi\beta\Gamma} - 2)]}{\pi\beta\Gamma(e^{\pi\beta\Gamma} - 1)^2(e^{\pi\beta\Gamma} + 1)} \quad (\text{A3})$$

$$P_{-1}^{\text{same}} \equiv P_{-1}^{0,0} = P_{-1}^{1,1} = \frac{e^{2\pi\beta\Gamma}[\pi\beta\Gamma + e^{\pi\beta\Gamma}(\pi\beta\Gamma - 2) + 2]}{\pi\beta\Gamma(e^{\pi\beta\Gamma} - 1)^2(e^{\pi\beta\Gamma} + 1)} \quad (\text{A4})$$

$$P_{-2}^{\text{same}} \equiv P_{-2}^{0,0} = P_{-2}^{1,1} = 0 \quad (\text{A5})$$

If the incoming bit mismatches its gate, we find

$$P_{+2}^{\text{diff}} \equiv P_{+2}^{0,1} = P_{+2}^{1,0} = 0 \quad (\text{A6})$$

$$P_{+1}^{\text{diff}} \equiv P_{+1}^{0,1} = P_{+1}^{1,0} = \frac{\pi\beta\Gamma + e^{\pi\beta\Gamma}(\pi\beta\Gamma - 2) + 2}{\pi\beta\Gamma(e^{\pi\beta\Gamma} - 1)^2(e^{\pi\beta\Gamma} + 1)} \quad (\text{A7})$$

$$P_{\text{stay}}^{\text{diff}} \equiv P_{\text{stay}}^{0,1} = P_{\text{stay}}^{1,0} = \frac{e^{\pi\beta\Gamma}[\pi\beta\Gamma(e^{\pi\beta\Gamma} - 3) + 2] - 2}{\pi\beta\Gamma(e^{\pi\beta\Gamma} - 1)^2(e^{\pi\beta\Gamma} + 1)} \quad (\text{A8})$$

$$P_{-1}^{\text{diff}} \equiv P_{-1}^{0,1} = P_{-1}^{1,0} = \frac{e^{\pi\beta\Gamma}[\pi\beta\Gamma + e^{\pi\beta\Gamma}(-3\pi\beta\Gamma + 2e^{\pi\beta\Gamma} - 2)]}{\pi\beta\Gamma(e^{\pi\beta\Gamma} - 1)^2(e^{\pi\beta\Gamma} + 1)} \quad (\text{A9})$$

$$P_{-2}^{\text{diff}} \equiv P_{-2}^{0,1} = P_{-2}^{1,0} = \frac{e^{2\pi\beta\Gamma}[\pi\beta\Gamma + e^{\pi\beta\Gamma}(\pi\beta\Gamma - 2) + 2]}{\pi\beta\Gamma(e^{\pi\beta\Gamma} - 1)^2(e^{\pi\beta\Gamma} + 1)} \quad (\text{A10})$$

The net probability to take a step Δk at the moment of bit renewal is then given by

$$R_{\Delta k} = P_{\text{in}}(\text{same}) \cdot P_{\Delta k}^{\text{same}} + P_{\text{in}}(\text{diff}) \cdot P_{\Delta k}^{\text{diff}} = \frac{1 + \delta}{2} P_{\Delta k}^{\text{same}} + \frac{1 - \delta}{2} P_{\Delta k}^{\text{diff}} \quad (\text{A11})$$

Over a long observation time, i.e. many interaction intervals, these discrete jumps in k -space produce average rotations by amounts $\Delta\theta_D = -2\pi, -\pi, 0, \pi, 2\pi$, per time interval τ^{bit} . The average work delivered per interval is simply the average rotation of the demon per interval multiplied, by the external torque:

$$\begin{aligned} W &= 2\pi\Gamma \cdot R_{+2} + \pi\Gamma \cdot R_{+1} - \pi\Gamma \cdot R_{-1} - 2\pi\Gamma \cdot R_{-2} \\ &= \frac{\pi\beta\Gamma\delta - \pi\beta\Gamma[3\coth(\pi\beta\Gamma) + \text{csch}(\pi\beta\Gamma)] + 4}{2\beta} \end{aligned} \quad (\text{A12})$$

498 **Appendix Compatibility with the second law of thermodynamics.**

499 Here we show that our analytical solution of the programmable demon in the slow-moving limit
500 obeys the second law of thermodynamics.

For convenience, define $x \equiv \delta$ and $y \equiv (e^\lambda - 1)/(e^\lambda + 1)$, where $\lambda \equiv \pi\beta\Gamma$. Then Eq. 11 becomes

$$\Delta S_L = \frac{1-x}{2} \ln \frac{1-x}{2} + \frac{1+x}{2} \ln \frac{1+x}{2} - \left(\frac{1-y}{2} \ln \frac{1-y}{2} + \frac{1+y}{2} \ln \frac{1+y}{2} \right) \quad (\text{A13})$$

and the dimensionless work done per bit (Eq. 7) is

$$\beta W = \frac{\lambda x}{2} - \frac{\lambda}{2} [3 \coth(\lambda) + \operatorname{csch}(\lambda)] + 2 \quad (\text{A14})$$

$$= \frac{x}{2} \ln \frac{1+y}{1-y} + 2 - \frac{1}{2} \left(\frac{2}{y} + y \right) \ln \frac{1+y}{1-y} \quad (\text{A15})$$

Taking the difference, we get

$$\Delta S_L - \beta W = -2 + \frac{1}{y} \ln \frac{1+y}{1-y} + \frac{x}{2} \ln \frac{(1+x)(1-y)}{(1-x)(1+y)} + \frac{1}{2} \ln \frac{(1+x)(1-x)}{(1-y)(1+y)} \quad (\text{A16})$$

$$= \frac{x+1}{2} \ln \frac{(1+x)/2}{(1+y)/2} + \frac{1-x}{2} \ln \frac{(1-x)/2}{(1-y)/2} + \frac{1}{y} \ln \frac{1+y}{1-y} - 2 \quad (\text{A17})$$

where $x \in [-1, +1]$ and $y \in (-1, +1)$. Note also that $P_{in}(\text{same}/\text{diff}) = (1 \pm x)/2$ (see Eq. 1) and $P_{out}(\text{same}/\text{diff}) = (1 \pm y)/2$ (see Eq. 10), which allows us to rewrite the above expression as

$$\Delta S_L - \beta W = D_{KL} [P_{in} | P_{out}] + \frac{1}{y} \ln \frac{1+y}{1-y} - 2 \quad (\text{A18})$$

501 where $D_{KL} \geq 0$ is the Kullback-Leibler divergence [49] between the incoming and outgoing bit
502 distributions.

Next, we show that

$$\frac{1}{y} \ln \frac{1+y}{1-y} - 2 \geq 0 \quad (\text{A19})$$

by expanding the logarithm as an infinite series:

$$\frac{1}{y} \ln \frac{1+y}{1-y} - 2 = \frac{1}{y} \left(\sum_{n=0}^{\infty} \frac{(-1)^n y^{n+1}}{n+1} + \sum_{n=0}^{\infty} \frac{y^{n+1}}{n+1} \right) - 2 \quad (\text{A20})$$

$$= \frac{1}{y} \sum_{n=0}^{\infty} \frac{2y^{2n+1}}{2n+1} - 2 \quad (\text{A21})$$

$$= \sum_{n=1}^{\infty} \frac{2y^{2n}}{2n+1} \geq 0 \quad (\text{A22})$$

where the equality is achieved when $y = 0$. Alternatively, we can rewrite the left side in terms of λ :

$$\frac{1}{y} \ln \frac{1+y}{1-y} - 2 = \frac{\lambda}{\tanh(\lambda/2)} - 2 = 2 \left(\frac{\lambda/2}{\tanh(\lambda/2)} - 1 \right) \geq 0 \quad (\text{A23})$$

503 where the last inequality follows since $|a| \geq |\tanh a|$ for any real a .

504 We thus confirm that in the slow-moving limit, our Maxwell's demon satisfies $\Delta S_L - \beta W \geq 0$,
505 where the equality is achieved only when the external force is absent and the incoming sequence is
506 totally random.

507

- 508 1. Lu, Z.; Mandal, D.; Jarzynski, C. Engineering Maxwell's demon. *Phys. Today* **2014**, *67*, 60–61.
- 509 2. Maxwell, J.C. *The Scientific Letters and Papers of James Clerk Maxwell*; Vol. 2: 1862–1873, Cambridge University
510 Press: Cambridge, 1995.
- 511 3. Smoluchowski, M. Experimentell nachweisbare, der üblichen Thermodynamik widersprechende
512 Molekularphänomene [Experimentally verifiable phenomena of molecules contradicting usual
513 thermodynamics]. *Physikalische Zeitschrift (German)* **1912**, *13*, 1069–1080.
- 514 4. Feynman, R.P.; Leighton, R.B.; Sands, M. *The Feynman Lectures on Physics*; Addison-Wesley: Reading, MA,
515 1966.
- 516 5. Landauer, R. Irreversibility and Heat Generation in the Computing Process. *IBM J. Res. Dev.* **1961**,
517 *5*, 183–191.
- 518 6. Penrose, O. *Foundations of statistical mechanics*; Vol. 42, Pergamon Press: Oxford, 1970.
- 519 7. Bennett, C.H. Logical Reversibility of Computation. *IBM J. Res. Dev.* **1973**, *17*, 525–532.
- 520 8. Bennett, C.H. Dissipation-error tradeoff on proofreading. *BioSystems* **1979**, *11*, 85–91.
- 521 9. Jarzynski, C. Nonequilibrium Equality for Free Energy Differences. *Phys. Rev. Lett.* **1997**, *78*, 2690–2693.
- 522 10. Crooks, G.E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy
523 differences. *Phys. Rev. E* **1999**, *60*, 2721.
- 524 11. Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. *Reports on Progress
525 in Physics* **2012**, *75*, 126001.
- 526 12. Collin, D.; Ritort, F.; Jarzynski, C.; Smith, S.B.; Tinoco Jr, I.; Bustamante, C. Verification of the Crooks
527 fluctuation theorem and recovery of RNA folding free energies. *Nature* **2005**, *437*, 231.
- 528 13. Kay, E.R.; Leigh, D.A.; Zerbetto, F. Synthetic molecular motors and mechanical machines. *Angewandte
529 Chemie International Edition* **2007**, *46*, 72–191.
- 530 14. Kim, K.H.; Qian, H. Fluctuation theorems for a molecular refrigerator. *Physical Review E* **2007**, *75*, 022102.
- 531 15. Gavrilov, M.; Chétrite, R.; Bechhoefer, J. Direct measurement of weakly nonequilibrium system entropy is
532 consistent with Gibbs–Shannon form. *Proceedings of the National Academy of Sciences* **2017**, *114*, 11097–11102.
- 533 16. Serreli, V.; Lee, C.F.; Kay, E.R.; Leigh, D.A. A molecular information ratchet. *Nature* **2007**, *445*, 523.
- 534 17. Bérut, A.; Arakelyan, A.; Petrosyan, A.; Ciliberto, S.; Dillenschneider, R.; Lutz, E. Experimental verification
535 of Landauer's principle linking information and thermodynamics. *Nature* **2012**, *483*, 187.
- 536 18. Koski, J.V.; Maisi, V.F.; Pekola, J.P.; Averin, D.V. Experimental realization of a Szilard engine with a single
537 electron. *Proceedings of the National Academy of Sciences* **2014**, *111*, 13786–13789.
- 538 19. Koski, J.V.; Kutvonen, A.; Khaymovich, I.M.; Ala-Nissila, T.; Pekola, J.P. On-Chip Maxwell's Demon as an
539 Information-Powered Refrigerator. *Phys. Rev. Lett.* **2015**, *115*, 260602.
- 540 20. Camati, P.A.; Peterson, J.P.; Batalhao, T.B.; Micadei, K.; Souza, A.M.; Sarthour, R.S.; Oliveira, I.S.; Serra,
541 R.M. Experimental rectification of entropy production by Maxwell's demon in a quantum system. *Physical
542 review letters* **2016**, *117*, 240502.
- 543 21. Chida, K.; Desai, S.; Nishiguchi, K.; Fujiwara, A. Power generator driven by Maxwell's demon. *Nature
544 communications* **2017**, *8*, 15310.
- 545 22. Elouard, C.; Herrera-Martí, D.; Huard, B.; Auffèves, A. Extracting Work from Quantum Measurement in
546 Maxwell's Demon Engines. *Physical Review Letters* **2017**, *118*, 260603.
- 547 23. Cottet, N.; Jezouin, S.; Bretheau, L.; Campagne-Ibarcq, P.; Ficheux, Q.; Anders, J.; Auffèves, A.; Azouit, R.;
548 Rouchon, P.; Huard, B. Observing a quantum Maxwell demon at work. *Proceedings of the National Academy
549 of Sciences* **2017**, *114*, 7561–7564.
- 550 24. Zurek, W.H. Thermodynamic cost of computation, algorithmic complexity and the information metric.
551 *Nature* **1989**, *341*, 119.
- 552 25. Leff, H.; Rex, A.F. *Maxwell's Demon 2 Entropy, Classical and Quantum Information, Computing*; CRC Press,
553 2002.
- 554 26. Sagawa, T.; Ueda, M. Generalized Jarzynski equality under nonequilibrium feedback control. *Physical
555 review letters* **2010**, *104*, 090602.
- 556 27. Sagawa, T.; Ueda, M. Nonequilibrium thermodynamics of feedback control. *Phys. Rev. E* **2012**, *85*, 021104.
- 557 28. Deffner, S.; Jarzynski, C. Information Processing and the Second Law of Thermodynamics: An Inclusive,
558 Hamiltonian Approach. *Phys. Rev. X* **2013**, *3*, 041003.

559 29. Sagawa, T.; Ueda, M. Role of mutual information in entropy production under information exchanges. *New Journal of Physics* **2013**, *15*, 125012.

560 30. Horowitz, J.M.; Esposito, M. Thermodynamics with continuous information flow. *Physical Review X* **2014**,
561 *4*, 031015.

562 31. Barato, A.; Seifert, U. Unifying three perspectives on information processing in stochastic thermodynamics. *Physical review letters* **2014**, *112*, 090601.

563 32. Parrondo, J.M.R.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. *Nat. Phys.* **2015**,
564 *11*, nphys3230.

565 33. Szilard, L. über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter
566 Wesen. *Z. Physik* **1929**, *53*, 840–856.

567 34. Cao, F.J.; Feito, M.; Touchette, H. Information and flux in a feedback controlled Brownian ratchet. *Physica
568 A: Statistical Mechanics and its Applications* **2009**, *388*, 113–119.

569 35. Vaikuntanathan, S.; Jarzynski, C. Modeling Maxwell's demon with a microcanonical Szilard engine. *Physical
570 Review E* **2011**, *83*, 061120.

571 36. Kim, S.W.; Sagawa, T.; De Liberato, S.; Ueda, M. Quantum Szilard engine. *Phys. Rev. Lett.* **2011**, *106*, 070401.

572 37. Mandal, D.; Jarzynski, C. Work and information processing in a solvable model of Maxwell's demon. *Proc.
573 Natl. Acad. Sci. U. S. A.* **2012**, *109*, 11641–11645.

574 38. Tu, Y. The nonequilibrium mechanism for ultrasensitivity in a biological switch: Sensing by Maxwell's
575 demons. *Proceedings of the National Academy of Sciences* **2008**, *105*, 11737–11741.

576 39. Mehta, P.; Schwab, D.J. Energetic costs of cellular computation. *Proceedings of the National Academy of
577 Sciences* **2012**.

578 40. Mandal, D.; Quan, H.T.; Jarzynski, C. Maxwell's refrigerator: an exactly solvable model. *Phys. Rev. Lett.*
579 **2013**, *111*, 030602.

580 41. Deffner, S. Information-driven current in a quantum Maxwell demon. *Physical Review E* **2013**, *88*, 062128.

581 42. Strasberg, P.; Schaller, G.; Brandes, T.; Esposito, M. Thermodynamics of a physical model implementing a
582 Maxwell demon. *Physical review letters* **2013**, *110*, 040601.

583 43. Barato, A.C.; Seifert, U. An autonomous and reversible Maxwell's demon. *EPL (Europhysics Letters)* **2013**,
584 *101*, 60001.

585 44. Chapman, A.; Miyake, A. How an autonomous quantum Maxwell demon can harness correlated
586 information. *Physical Review E* **2015**, *92*, 062125.

587 45. Boyd, A.B.; Mandal, D.; Crutchfield, J.P. Identifying functional thermodynamics in autonomous Maxwellian
588 ratchets. *New Journal of Physics* **2016**, *18*, 023049.

589 46. Ouldridge, T.E.; Govern, C.C.; ten Wolde, P.R. Thermodynamics of computational copying in biochemical
590 systems. *Physical Review X* **2017**, *7*, 021004.

591 47. Givant, S.; Halmos, P. *Introduction to Boolean algebras*; Springer Science & Business Media, 2008.

592 48. Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. *J. Phys. Chem.* **1977**, *81*, 2340–2361.

593 49. Kullback, S.; Leibler, R.A. On information and sufficiency. *The annals of mathematical statistics* **1951**,
594 *22*, 79–86.

595 50. Bennett, C.H. Notes on Landauer's Principle, Reversible Computation, and Maxwell's Demon. *Stud. Hist.
596 Phil. Mod. Phys.* **2003**, *34*, 501.

597 51. Cover, T.M.; Thomas, J.A. *Elements of information theory*; John Wiley & Sons, 2012.

598 52. Sagawa, T.; Ueda, M. Fluctuation theorem with information exchange: Role of correlations in stochastic
599 thermodynamics. *Physical review letters* **2012**, *109*, 180602.

600