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1 Abstract: We introduce and investigate a simple and explicitly mechanical model of Maxwell’s
> demon — a device that interacts with a memory register (a stream of bits), a thermal reservoir (an ideal
s gas) and a work reservoir (a mass that can be lifted or lowered). Our device is similar to one that
«  we have briefly described elsewhere [1], but it has the additional feature that it can be programmed
s torecognize a chosen reference sequence, for instance, the binary representation of sr. If the bits in
s the memory register match those of the reference sequence, then the device extracts heat from the
»  thermal reservoir and converts it into work to lift a small mass. Conversely, the device can operate as
s ageneralized Landauer’s eraser (or copier), harnessing the energy of a dropping mass to write the
o chosen reference sequence onto the memory register, replacing whatever information may previously
1o have been stored there. Our model can be interpreted either as a machine that autonomously performs
1 aconversion between information and energy, or else as a feedback-controlled device that is operated
1= by an external agent. We derive generalized second laws of thermodynamics for both pictures. We
1z illustrate our model with numerical simulations, as well as analytical calculations in a particular,
1 exactly solvable limit.

s Keywords: Maxwell’s demon; Shannon entropy; information engine; Landauer’s principle; Szilard
1 engine; second law of thermodynamics.

7 1. Introduction

-

18 The field of information thermodynamics traces its origins to a whimsical, 150-year-old thought
1o experiment. In a letter to a friend [2], James Clerk Maxwell introduced a hypothetical “neat-fingered
20 being”, now universally known as Maxwell’s demon, who brings about an apparent violation of the
a second law of thermodynamics, simply by observing the motions of gas molecules and manipulating
22 a trapdoor to segregate faster from slower molecules. While Maxwell emphasized the role of the
=3 demon’s intelligence, subsequent researchers — notably including Marian Smoluchowski [3] and
2« Richard Feynman [4] — have considered whether a dumb device might be able to accomplish similar
= results, and if so, what the existence of such a device would imply about the status of the second law.
26 Inrecent decades a consensus has formed around a perspective developed largely by Rolf Landauer,
2z Oliver Penrose and Charles Bennett.[5-7] At the heart of this perspective is the notion that if Maxwell’s
22 demon were a purely physical machine, then the information it gathers must be stored in a physical
20 memory register, commonly represented as a sequence of classical bits. The writing of this information
30 increases the entropy of the bits, thereby (so the argument goes) compensating for the decrease of
a1 entropy that occurs elsewhere as the machine “violates” the second law. Bennett’s analysis of chemical
2 proofreading [8] provides an early model system illustrating this idea.

3 The past decade has seen renewed interest in this topic, motivated in part by its connections with
s« fluctuation theorems and related advances in nonequilibrium statistical physics [9-11], as well as by
s improved experimental capabilities for manipulating small systems [12-23]. Progress has included
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ss  sharpened relationships between thermodynamic and information-theoretic quantities [24-32] as well
sz as a variety of simple model systems more explicit than those explored in the past [1,18-21,33—46].

38 Two broad paradigms have emerged in these investigations — autonomous and non-autonomous
s demons. The non-autonomous paradigm echoes Maxwell’s original idea: an external agent that is
20 in a sense “outside of Physics” (the demon) performs feedback control on a material object (e.g. a
a1 trapdoor) to accomplish a task apparently prohibited by the second law. This task may be the creation
«2 of a temperature gradient as in Maxwell’s scenario, or the conversion of heat into work as in many
a3 later models such as the Szilard engine[33]. The key idea is that the agent rectifies thermal fluctuations,
4+ using the information it gains by observing nanoscale motions. In this paradigm, the thermodynamic
4 benefits delivered by the agent — such as work generated to lift a mass against gravity — are related to
« the amount of information it gathers about its surroundings.

a7 By contrast, the autonomous paradigm is all-inclusive, in that the demon and, importantly, its
«s memory are explicitly modeled as physical systems.[1,37,40,41,43-46] In this paradigm the goal is often
4 toillustrate how a physical machine might actually accomplish results similar to those of Maxwell’s
so imagined neat-fingered being, and to explore quantitatively how the thermodynamic benefits that the
s:  machine delivers are related to changes in the information content of its memory.

52 In the present paper we introduce and analyze a model of Maxwell’s demon that can be interpreted
ss  within either the autonomous or the non-autonomous paradigm. Our model builds on one that we
sa briefly described, with our colleague Dibyendu Mandal, in 2014.[1] Unlike earlier models involving
ss  systems making stochastic transitions among a discrete set of states[37,38,40-43,45,46], our model is
s entirely mechanistic — the demon and its memory consist of frictionless, moving components immersed
sz in a dilute gas, evolving under Newtonian dynamics. Specifically, the demon is a rotational ring
ss equipped with two blades and the memory is represented by a sequence of rotating paddles, as shown
s in Fig. 3 and discussed in greater detail in Sec. 2. We showed in Ref. [1] that if the system’s memory
o is initialized in a “clean” state corresponding to the bit sequence “...00000...”, then the mechanistic
e1 interplay between the ring, the paddles and the dilute gas produces rotational motion that lifts a
ez small mass against gravity. In this mode of operation the entire contraption is an information engine,
es rectifying thermal fluctuations to convert heat into work — the fuel for this process is provided by the
es randomization of the memory, as the clean bit stream is converted to a “polluted” mixture of 0’s and
es 1’s. Conversely, if the memory begins in a random mixture “...01101...”, then a large mass that drops
es with gravity can be harnessed to reset all the bits to 0’s, illustrating Landauer’s principle [5] that work
ez is required to erase information.

o8 In Ref. [1] a clean memory register was equated with the uniform bit sequence “...00000...”. In
e principle, however, what matters is not uniformity but rather lack of randomness, as quantified
7 by Shannon entropy. Let us use the term generalized clean memory to denote an arbitrary but fully
= determined bit sequence, for instance the binary representation of 7r. Since a fully determined sequence
72 is entropically equivalent to the sequence “...00000...”, a generalized clean memory should be able
73 to serve as a thermodynamic resource to drive an information engine. This consideration motivates
7a  us to design a mechanical information engine that operates on a generalized clean memory. Our
75 model is programmable, in the following sense: for any choice of pre-determined reference sequence
76— be it the binary representation of 7, or the repeating sequence “...010101...”, or for that matter the
7z uniform sequence “...000000...” — we can program the system so that if the memory bits are initialized
e in this reference sequence then the machine operates as an information engine, lifting a small mass
7o against gravity, as illustrated schematically in Fig. 1. Conversely, if the bits are initialized in a different
s sequence, then the energy from a falling large mass can be used to write the reference sequence onto
e1  the bits (rather than resetting them all to the 0 state as in Ref. [1]).

o2 As we will describe in further detail, our system is programmed using a sequence of binary
es programmable gates. If these gates are fixed, prior to the start of the process, to match the chosen
=« reference sequence, then the machine operates as an autonomous Maxwell demon. However, we can
es alternatively imagine that an external agent arranges the gates on the fly, one by one, using information
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s based on real-time observations. By thus reinterpreting each programmable gate as a binary switch
ez that is feedback controlled by the agent, our model becomes an illustration of a non-autonomous
es  Maxwell demon. Analogous to the autonomous picture, where the system can operate in either an
s engine mode or an information copier mode, the agent-involved feedback control picture operates
% either as an engine or information recorder. (See Fig. 2.)

@
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Figure 1. In our schematic conception of a programmable, autonomous Maxwell’s demon, a fixed set
of binary gates defines a reference sequence. As the demon interacts one bit at a time with an incoming
sequence of memory bits, it is able to lift a small mass against gravity if the incoming bit sequence
matches the reference sequence. As the demon writes information onto the memory bits, the outgoing
sequence becomes less correlated with the reference sequence. Conversely, if the mass is large and falls
against gravity, then this energy can be used to copy the reference sequence to the memory bits.
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a. Feedback control engine powered by correct measurement  b. Information eraser and recorder powered by mechanical work.

Figure 2. Alternatively, our model can illustrate a non-autonomous device operated via feedback
control by an external agent. (a) In the engine mode, which resembles Szilard’s thought experiment [33],
the agent measures each incoming memory bit and switches a gate accordingly. When these
measurements are accurate, the procedure induces a bias toward counter-clockwise rotation that
can be harnessed to lift a small mass against gravity. (b) If the mass is large and falls against gravity,
the energy that is released can be used to write a sequence chosen by the agent, onto the outgoing bit
stream. In this mode the agent does not measure the incoming bits, but rather manipulates the gate to
encode the desired sequence.

01 The paper is structured as follows. In Sec. 2 we describe the various components of our device,
»2 and we sketch how it can operate as an autonomous information engine. In Sec. 3 we describe in
o3 detail the three possible modes of operation of our autonomous device: as an engine, an eraser (or
oa copier) and a “dud”. In Sec. 4 we illustrate these modes of operation using numerical simulations, we
s solve explicitly for the behavior of the model in a particular “slow-moving” limit, and we consider
ss its thermodynamic description, including its efficiency. In Sec. 5 we discuss how our model can be
oz used to illustrate a non-autonomous machine, operated by an external agent using measurement and
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s feedback —as in Maxwell’s original thought experiment — and we obtain a bound on the amount of
9o work that this machine can deliver. We end in Sec. 6 with a brief summary and discussion.

100 2. Programmable Maxwell’s Demon

w1 2.1. Components and basic design

102 As mentioned, the machine described in this paper is equipped with a binary reference sequence
103 that can be preprogrammed to any desired pattern of 0’s and 1’s — for instance, the binary representation
wa Of 71. This reference sequence is fixed, and is distinct from the sequence of memory bits that interact
15 dynamically with the rotational ring. As we will argue, if the incoming memory bits match the
106 reference sequence then the ring favors counter-clockwise (CCW) rotation that can be used to perform
1z work against an external load.

Prograrrlme_d Gates
(0&1)

¥
Device \

Figure 3. Snapshot of our programmable demon. A series of green paddles move down frictionlessly

along the central axle. The paddles are separated by the red bars into binary states, left (0) and right (1)
— see inset. Each bit passes by the rotational ring (the blue ring with two inward blades) for the same
finite amount of time, during which it can change states. We claim that if the incoming bits (000101 - - - )
are in agreement with the programmed gates (000101 - - - ), then the ring favors CCW motion, which can
be used to lift an external load. A top view of the system is shown in the inset. A video clip illustrating

the dynamics of our demon is found at https:/ /youtu.be/LkY]jJ__-Cs

108 As illustrated in Figure 3, the entire machine consists of three components — a sequence of
100 paddles acting as the bits of a memory register, a set of fixed gates that encode a preprogrammed
1o binary reference sequence, and the demon that is realized by a rotational ring: a ring that interacts
1 with the memory register via blade-paddle collision and can perform work via rotation against a
12 constant external force. We now describe these components in detail, beginning with the paddles that
us  constitute the bits of the memory register. These paddles rotate frictionlessly around a central axle.
1s  The orientation of a paddle is given by an angle 6. When 63 € (0, 1) the paddle represents a bit in the
us 0 state, and when 6p € (71,277) it represents a bit in the 1 state. Two blocking bars (shown as vertical
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ue red bars) located at angles 0 and 7t prevent each bit from spontaneously flipping between the 0 and 1
uz  states. Each blocking bar contains a gap, as shown in Fig. 3. The central axle moves downward at a
us constant speed, carrying the bits and gates past the demon. The entire machine is immersed in an ideal
ue  gas in thermal equilibrium at temperature T. The gas particles collide elastically with the paddles,
120 causing them to undergo Brownian-like rotation around the axle. For clarity the gas particles are not
121 shown in the figure.

122 The preprogrammed reference sequence is encoded in a set of rigid gates attached to the central
122 axle, which accompany the paddles as they move downward past the demon. These gates are shown
124 as L-shaped blue bars extending perpendicularly from the axle. The orientation of a gate is fixed at
125 either = 0 (representing state 0) or 0 = 7t (state 1). When a paddle and its gate arrive at the vertical
126 location of the gaps on the red bars, the paddle is able to switch its state by passing through the gap
127 that is not blocked by the gate. For example, if the gate is in state 0, the gap at 6 = 0 is blocked, and the
126 bit paddle can switch its state by passing through the gap at 6 = 7.

120 The rigid ring is equipped with two inward-pointing blades, attached at opposite locations. The
130 ring rotates freely around the central axle but does not translate or wobble. The angular orientation of
11 the ring is specified by 0p; see inset of Figure 3. Like the paddles, the ring undergoes Brownian-like
132 rotation due to elastic collisions between its blades and the gas particles. Additionally, the ring’s blades
133 can collide elastically with the paddles as they move past it. The ring is situated at the vertical height
13a  of the gaps in the blocking bars. The spacing between bits, the size of the gaps, and the vertical widths
135 Of the paddles and the ring’s blades are set so that, at any time, there is exactly one paddle within the
136 vertical range of the gap, and that paddle is simultaneously within the vertical collision range of the
13z ring’s blades. This paddle is called the interacting bit, and its gate is called the engaged gate. We will
138 use the term interaction interval to denote the interval of time during which a given paddle acts as an
130 interacting bit, and its gate acts as the engaged gate. The duration of the interaction interval, 7"t
1e0 the same for each paddle and gate.

141 The life cycle of a given paddle (memory bit) then proceeds as follows. Prior to arriving at the
12 vertical level of the ring, the orientation of the paddle, 63, performs Brownian-like motion but the
13 binary state of the bit (0 or 1) is frozen due to the presence of the blocking bars. This binary state
14s Tepresent an incoming memory bit. Then, over the course of an interaction interval of duration 7int the
s paddle can switch between the 0 and 1 states, by passing through the gap that is not blocked by the
s reference gate; during this interval the paddle also interacts with the blades of the ring. Finally, after
1z the interaction interval, as the paddle passes below the vertical level of the ring, the binary state of the
s paddle is once again frozen due to the blocking bars — at this point the paddle represents an outgoing
140 mMemory bit.

,1is

1o 2.2. Memory register — a sequence of bits

151 The binary state of an incoming memory bit (paddle), b € {0,1}, might or might not be the
12 same as the binary state of the corresponding reference bit (gate), ¢ € {0,1}. We will characterize
s the cleanness of the incoming bit sequence (- - - b, _1, by, by11 - - - ) by the degree to which it matches
s the fixed reference sequence (- - - g,—1,8n,8n+1 - - - ). If the binary state of each incoming memory bit
15 matches that of the accompanying gate, i.e. if b, = g, Vn, then the memory is considered to be perfectly
16 clean. If the incoming sequence contains mismatches between memory and reference bits, then these
15z mismatches are considered to be impurities that pollute the memory sequence.

Let P, (same) denote the fraction of incoming bits that are correctly matched with their reference
bits (00 or 11), and P;,(diff) the fraction that are mismatched (01 or 10). We assume that the probability
of a mismatch is independent of the state of the reference bit, and the mismatches are statistically
uncorrelated with one another. We quantify the cleanness of the incoming memory by the excess ratio
of clean bits:

0 = P (same) — Py, (diff) € [—1, +1] 1)
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It is useful at this point to introduce a logical variable L that is the Boolean equality between the
states of the bit and the gate: L = B Exy G [47]. That is, the value of L is given by

| =true =same if b=g

e @)
| =false =diff if b#g

Here and below, we use the capital letters B, G and L to refer to binary variables, and lower case b, g
and ! to denote the values of these variables. The sequences of incoming memory and reference bits
together specify a sequence (- - - I,_1,1y, 1,41 - - - ), whose Shannon entropy, per bit, is given by

SLin = — [Pin(same) log Pin (same) + Py (diff) log Pin (diff)] € [0,10g 2] (3)
For the outgoing bits (- - - b}, _;,by, b, ;- --) we can similarly define Pout(same), Pout(diff) and
Stout = — [Pout(same) log Pout(same) + Poyt (diff) log Poye (diff) | 4)

1ss  The difference ASy = Sy oyt — Siin quantifies the cleanness of the memory sequence, per bit, due to
s the interactions between the memory bits and ring. While the interaction between the memory bits
160 and the demon might in principle induce correlations among the outgoing bits, in our analysis we will
161 ignore these correlations.

162 2.3. Work reservoir — a mass that can be raised or lowered

163 In addjition to the elements described above, an external load, I, acts on the ring in the clockwise
1es  (CW) direction. This load is generated by a mass that hangs from a string wrapped around the ring
1es — the gravitational force on the mass produces a CW torque on the ring. If the ring rotates in the
16 counter-clockwise (CCW) direction the mass is lifted upwards. This mass is not shown in Figure 3.

2T 027

Biased Rotation

0

Biased Rotation

e0

\(‘i

3
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S
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m >
(a) Gate=Bit=0 (b) Gate=Bit=1

Figure 4. Engine Mode. The ring prefers CCW rotation when the bit starts with the state that is in
agreement with its corresponding gate. The blue dots represent the programmed gates.

167 It is useful to understand the operation of our machine in the absence of this load, i.e. whenI' = 0.
16 To that end, let us first assume that the incoming bit sequence is perfectly clean: the binary state of
160 each memory bit matches that of its reference bit (6 = +1). There are then two possible combinations
170 for an incoming memory and reference bit, (00) and (11), illustrated in Figure 4. In the former case
i (Fig. 4a), the paddle is initially confined (by the blocking bars) within the angular range 6 € (0, 77).
172 During the interaction interval, this paddle has the opportunity to “expand” into the full circular range
w73 (0,27), by swinging through the gap located at 6 = 7. This opportunity produces a statistical bias that
17a favors CCW rotation, which in turn induces a CCW rotational bias for the ring, due to the possibility of
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175 collisions between the paddle and the ring’s blades. For the incoming combination (11), the expansion
e Of the memory bit during the interaction again interval favors CCW rotation as the reference gate
17z blocks the gap at § = 7t (Fig. 4b). In this manner, over the course of many interaction intervals the ring
17e  settles into a steady state in which the ring rotates systematically in the counterclockwise direction —
s the thermal fluctuations generated by collisions with the gas particles are rectified to produce directed
10 rotation. In this steady state there is a continual exchange of energy (due to collisions) between the
i1 ring’s blades and the gas, but this exchange does not lead to a net flow of energy in one direction.

182 By similar arguments, the maximally unclean situation (6 = —1) produces an identical bias in
1e3  the clockwise direction. More generally, each correctly matched pair of memory and reference bits
e generates a bias toward CCW rotation, while each mismatched pair generates a bias toward CW
s rotation. Hence, over many interaction intervals, our ring (in the absence of an external load) produces
16 a rotational bias whose direction is CCW for § > 0 and CW for § < 0. The strength of the bias is
17 quantified by |J].

188 Let us now assume 6 > 0 and imagine that we add an external load, I' > 0. If the load is
1o sufficiently small then the bias generated by the ring will continue to produce CCW rotation (albeit at
10 alower rate than if the load were absent) thereby lifting the mass against gravity. In this situation the
101 ring settles into a steady state in which energy is systematically withdrawn from the heat bath (gas)
102 and delivered to perform mechanical work.

103 3. Operational Modes of the Programmable Demon

108 More generally, the behavior of our ring depends on four parameters that we consider to be
15 tunable: the memory cleanness J, the bath temperature T, the external load I', and the duration of the
we interaction interval 7. ! Depending on the values of these four parameters, the machine operates in
17 one of three different modes — as an information engine, an information eraser or a dud. In the limit
ws Tt — oo the model becomes analytically solvable (see Sec. 4.2), and its behavior is determined by the
100 dimensionless parameters § and BT, where B = (kpT) !, as illustrated by the phase diagram shown in
200 Figure 10. We now discuss each mode separately.

200 3.1. Engine mode

As mentioned in Sec. 2.3, for § > 0 and sufficiently small I' > 0, the ring is able to convert energy
drawn from the heat bath into work against the external load, thereby operating as an engine. In the
limiting case § = 1, each incoming bit is matched perfectly to its reference bit, but this is no longer the
case with the outgoing bits:

8" = Poyt(same) — Poye(diff) < 1 (5)

More generally, when § > 0 and the ring operates in the engine mode we have
§>6>0 (6)

202 as CCW rotation tends to generate mismatches between memory bits and reference bits. Eq. 6 indicates
203 that there is greater uncertainty — less correlation with the reference bits — in the outgoing memory
20s  sequence than in the incoming sequence: ASy > 0. In effect, the decrease of thermodynamic entropy
20s associated with the continual withdrawal of energy from the heat bath, is compensated by the increase
206 Of the Shannon entropy of the memory register. Our ring thus operates as an information engine, with a
207 clean sequence of incoming bits serving as a thermodynamic resource that allows the system to convert
208 heat from the bath into work against the load, without violating the second law of thermodynamics.

1 All other parameters, such as the mass and density of gas particles, the length of the paddles, etc., are fixed in our model.
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200 In the non-programmable engine of Ref. [1], an incoming sequence of 0’s is converted into a
20 mixture of 0's and 1’s. It is natural to view this conversion as a process of writing information to the bit
2 sequence. The outgoing pattern encodes information about the history of the ring, as outgoing 1’s are
22 correlated with CCW rotation during the corresponding interaction intervals. In the present model, by
213 contrast, both the incoming and the outgoing sequences are mixtures of 0’s and 1’s. We can still view
z1a  this as a process of writing information, provided this information is defined relative to the reference
x5 bits: a mismatch between an outgoing memory bit and its reference bit indicates a likelihood that CCW
216 rotation occurred during that bit’s interaction interval. Alternatively, for the present model we might
z7  view the incoming sequence as containing information (e.g. the binary digits of 7r), which is “digested”
zne by the ring as it rectifies thermal fluctuations to generate work. Regardless of whether we interpret the
210 ring as writing information onto a clean memory sequence, or digesting information contained in that
220 sequence, the net result is the same: when the ring acts as an engine, the outgoing bit sequence is more
2z disordered than the incoming one, AS; > 0.

222 3.2. Eraser mode

223 Now let us consider what happens when (1) the incoming bit sequence is maximally unclean
224 (0 = 0) i.e. the incoming bits are uncorrelated with the reference bits, and (2) a large mass produces a
225 strong external load in the CW direction, I' > 0. During a given interaction interval the mass drops as
226 far as it can, producing CW rotation of the ring until the interacting paddle (bit) is pinched between
227 one of the blades of the ring and the rigid engaging gate associated with that paddle, as illustrated
22s  in Figure 5. If the reference bit is in state 0, then the engaging gate is located at § = 0 and the paddle
220 that encodes the memory bit is forced by the CW rotation into a state 0 < 63 < 7, corresponding to
230 the binary state 0 (Figure 5a). Conversely, if the reference bit is in state 1, then the engaging gate is
21 situated at 8 = 7t and the paddle is forced into a state 77 < 83 < 27, corresponding to the binary state
22 1 (Figure 5b). In either case, at the end of the interaction interval the memory bit matches the reference
23 bit (00 or 11).

238 In this mode of operation, the ring harnesses the gravitational energy of the falling mass to
235 decrease the randomness in the bit sequence. Specifically, AS;, = —log2 < 0, since the outgoing bits
236 are perfectly matched to the reference bits; see Egs. 3 and 4. This decrease in the Shannon entropy of
237 the memory bit stream is compensated by an increase in the thermodynamic entropy of the heat bath,
23e  as the energy from the falling mass is ultimately dissipated into the bath.

239 The model developed in Ref. [1] displayed a similar mode of operation, with a falling mass
2a0 converting an incoming sequence of 0’s and 1’s into an outgoing sequence of 0’s. We referred to this
2a mode as Landauer’s eraser, as it illustrated Landauer’s principle that heat must be dissipated in order to
22 erase information. We will use the same terminology to refer to the mode of operation just described
23 for the present model, although Landauer’s copier might be more apt in this context, since the net effect
24s  is that the preprogrammed reference sequence is copied onto the memory bits.

225 3.3. Dud mode

246 It is useful to think of a clean memory (6 = 1) as a thermodynamic resource, just as a mass that
2a7 has been lifted against gravity is a thermodynamic resource. The engine and eraser modes represent
2es  an interplay between these two resources, in which one resource is depleted in order to increase the
2a0  other. Thus in the engine mode, the cleanness of the memory bit stream is diminished in order to
260 raise the mass against gravity, while in the eraser mode the gravitational potential energy of the mass
=1 is spent in order to obtain a clean memory. When the incoming bit stream is sufficiently clean and
=2 the external load (mass) is sufficiently small, the ring acts as an engine, whereas when the incoming
263 bits are disordered and the mass is large, it acts as an eraser. For intermediate values of 4 and ', the
2ss  ring might act either in the engine mode or in the eraser mode, depending on the values of other
2ss  parameters such as the interaction time 7™ and the temperature and density of the surrounding gas.
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Strong Strong
™ External Load T External Load

(a) Gate=0 (b) Gate=1

Figure 5. Eraser (Copier) Mode. Under a strong external load, CW rotation occurs until the bit becomes
pinched between the engaging gate (shown as a blue dot situated on the gray dashed line) and a blade
of the ring. The binary state of the memory bit then matches that of the reference bit.

256 There is also a third possibility: the mass drops while the disorder of the memory increases,
a7 ASp > 0. We call this the dud mode, since it represents a wasteful depletion of both thermodynamic
s resources. This mode arises either if the incoming memory sequence contains a surplus of mismatches
20 over correct matches, § < 0, and the load I' > 0 is not sufficiently strong to produce an even greater
260 surplus of correct matches in the outgoing sequence — this is illustrated by the white area region
201 appearing in the second quadrant in Fig. 10 — or if a surplus of correct matches in the incoming
262 sequence is not sufficient to raise the mass against gravity, while simultaneously the load I' > 0 is not
263 sufficient to counter the tendency of the bits to randomize — this is illustrated by the narrow white
26 tongue appearing in the first quadrant in Fig. 10.

265 In the dud mode, the Shannon entropy of the memory sequence increases, AS; > 0, and the
20s thermodynamic entropy of the surrounding gas increases, as it absorbs the energy of the falling mass.

26z 4. Numerical and analytical results

2 4.1. Numerical simulations

260 We performed numerical simulations of our contraption immersed in a dilute gas, modeling the
270 collisions between the gas particles and the paddles and blades as Poisson processes. The probability
=1 per unit time that a gas particle strikes a particular location of a given paddle or blade is determined
22 by the temperature T and density of the gas, the angular velocity of the paddle or blade, and the
213 radial location of the point of collision. During a given interaction interval we simulate the dynamics
2za  Of the ring and the interacting bit as a sequence of events. Each event is a blade-paddle collision, a
275 paddle-gate collision, or a collision of a gas particle with either the paddle or the blade. After each
276 event the angular velocity of the blade and/or paddle is appropriately updated, and the next event is
2z generated stochastically using the Gillespie algorithm [48]. At the end of the interaction interval the
e machine undergoes a bit renewal, in which the old interacting bit is replaced by a new one, whose
27 angular location 03 and velocity 05 are assigned randomly according to the values of § and T.

280 Fig. 6 shows eleven angular trajectories of the angular rotation of the ring, 6p(t), illustrating
21 the engine mode and the dud mode. The simulations were performed at temperature kgT = 1 and
202 load I’ = 0.05 kpT, for eleven different values of the cleanness of the incoming memory bits, J. Each
263 simulation lasted for 2000 interaction intervals, representing 2000 incoming bits, with 7"t = 20.
2sa  The gates were prepared in the repeating binary sequence “...0101101011...”. In agreement with the
2es arguments of Sec. 3, when ¢ is close to 1, the ring undergoes systematic counterclockwise rotation
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26 and the ring performs work against the external load, lifting the mass against gravity (engine mode).
ze7  For less clean incoming sequences, with values § < 0.6, the ring can no longer overcome the external
26 torque and rotates clockwise (dud mode).

2000
1000 5=1 4
§=0.8
0 §=06 |4
=04
= -1000 §=0.2 | |
;’D §=0.0
-2000 5=-02| |
§=-04
-3000 §=-061]
§=-0.8
-4000 9=-10] |
5000 ‘ ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500

t /A"

Figure 6. Trajectories of the ring’s angular orientation for different values of J at fixed load I' = 0.05 kT,
with a bit renewal rate of 1 bit per 20 seconds (t™™ = 20). For § = 1 and § = 0.8 the ring performs work
against the clockwise external torque, while for the other values of J, the external load dominates and
work is dissipated into the heat bath.

280 To illustrate the eraser mode, Fig 7 shows four trajectories simulated as in Fig. 6, except that we
200 fix 6 = 0.2 and vary the external torque: I'lkgT| = 0.1, 0.15, 0.2, 0.25. As expected, the stronger the
201 load, the faster the ring rotates in the CW direction, leading to more energy dissipated into the heat
202 bath. We find that for I' > 0.15 kg T, the outgoing sequence is cleaner than the incoming sequence of
203 bits hence the ring functions as an eraser.

20a 4.2, Analytical results for the slow-moving limit

205 Let us now consider the limit of long interaction time 7"t — co. In this limit the behavior of the
206 ring during one interaction interval becomes uncorrelated with its behavior in the next interval. The
207 average work performed by the ring, W, and the Shannon entropy change of the memory tape, ASy,
20 can then be computed analytically and are given by Eqgs. 7 and 11 below. We now sketch the approach
200 that is taken to obtain these results, leaving the technical details to the Appendix.

300 Letting (0, 6p) denote the instantaneous configuration of the composite system — the interacting
so1  bit and the ring — we depict the relevant features of configuration space in Figure 8, with bold solid
sz lines representing hard wall boundaries. Note that the boundary conditions depend on the state of the
s0s reference bit, 0 or 1, through the placement of the engaging gate at = 0 or 6 = 7.

304 During a given interaction interval, the ring and interacting bit undergo random collisions with
s0s the surrounding bath particles, while the external load imposes a potential energy contribution I'0p that
s0s generates a CW torque on the ring. The ring and bit are confined within a single parallelogram-shaped
s07  cell in configuration space (see Fig. 8), and the composite system (6, 0p) has sufficient time to relax to
s0s  equilibrium within this cell. Hence, if the composite system begins within a particular cell at the start
s00  Of an interaction interval, then at the end of the interval its statistical state is given by a Boltzmann
a0 distribution restricted to that cell.

311 Let us suppose that during the initial interaction interval the composite system is found in one
a1z of the two shaded cells depicted in Fig. 8, depending on the state of the reference bit. Let pgq(()B, 6p)
a3 and pe{q(GB, 6p) denote the equilibrium distributions restricted to these two cells. The correlations
a1s  between 0p and 6p differ in these two distributions, but if we integrate either distribution over 6g, then
s the resulting marginal equilibrium distributions for 6 are identical: pj5(6p) = [ dfg pgq = [dbg p?q.
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Figure 7. Trajectories of the ring’s angular orientation for different values of CW external torque
I', at fixed § = 0.2. For each trajectory, the ring rotates in the CW direction and thus the
energy of the falling mass is dissipated into the heat bath. With increasing external torque (I' =
0.1kgT, 0.15kpT, 0.2kgT, 0.25kpT), the cleanness of the outgoing sequence of bits increases as well:
6 =0.1884, 0.2694, 0.4062, 0.4742. For T > 0.15kgT we obtain &’ > 0.2 hence the ring acts as an eraser,

removing randomness from the incoming sequence.
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Figure 8. The configuration space of the ring and interacting bit. The tilted lines at 6p — 0 = nm
depict hard boundaries associated with a collision between the interacting bit paddle and either blade
of the ring. The vertical solid lines correspond to the location of the engaging gate that blocks the
paddle. This gate is located at = 0 = 27r when the reference bit is set to 0, panel (a), or at & = 7w when
the reference bit is set to 1, panel (b). The dashed lines in (b) represent periodic boundary conditions.
The hard wall boundaries partition the configuration space into parallelogram-shaped cells, which are
numbered as shown, with cell #0 shaded in each panel.

ais  The distribution pg] has support in the region —7t < 6p < 27t. In the absence of an external load,
a7z both pgq and p?q are uniform distributions within the shaded regions, and p)'(6p) has the shape of
ae  an isosceles trapezoid. In the opposite limit of a strong external load I' > kgT, pgl(GD) is strongly

s10 concentrated near fp = — 7 (due to the Boltzmann factor e~PT%), as the memory bit paddle becomes
s20 pinched between one of the ring’s blades and the engaging gate.
321 At the start of the next interaction interval, the memory and reference bits are replaced, or renewed,

sz by the arrival of a new paddle and engaging gate. The location of the engaging gate now reflects
;23 the new reference bit, 0 or 1. The state of the new memory bit, b, either matches or mismatches the
s24  reference bit, with a probability determined by the value of §. We can treat the configuration of the
;25 incoming memory bit as a random, uniform sample either from the range 0 < 6 < wif b = 0, or
226 from m < 0g < 27 if b = 1. This renewal process instantaneously maps the final distribution of the
sz composite system at the end of one interaction interval, into a new initial distribution at the beginning
:2¢  Of the next interval, as the variable 65 now refers to the new memory bit rather than the old one. This
;20 mapping depends on the state of the new bit, as illustrated in Figure 9. At the start of a new interaction
330 interval, the bit and ring configurations, 3 and 6p, are uncorrelated.

331 If the machine (bit + ring) is found in cell #k during one interaction interval, and if the new,
;2 incoming memory and reference bits are correctly matched, then during the next interval it will be
s33 found in one of four possible cells, corresponding to a displacement Ak = —1,0, 1 or 2, as illustrated

s3s  in Figs. 8 and 9 for k = 0. The probability distribution for Ak is determined by considering how the
335 equilibrium distribution restricted to the initial cell (#k) is redistributed by the mapping that occurs
;36 upon bit renewal. By similar arguments, if the incoming memory and reference bits are mismatched,
337 then the displacement is Ak = —2,—1,0 or 1.

338 The process then repeats itself over the next interaction interval: the probability distribution
330 relaxes to equilibrium within each cell, and then renewal occurs when the new memory and reference
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—27

(a) Gate=Bit=0 (b) Gate=Bit=1

Figure 9. The shaded regions indicate the distribution of the composite system right after renewal, for
the case when the memory bit is correctly matched with the reference bit. For purpose of illustration,
we assume that just before the renewal the system was found in either one of the shaded cells shown in
Fig. 8, both corresponding to #0. In (a), the new memory and reference bits are in the combined state
(00), whereas (b) corresponds to the combination (11). The marginal probability distribution of the
ring’s angle, pesl(GD), is unaffected by the renewal mapping.

a0 Dbits arrive. Thus, from one interaction interval to the next, we can treat the dynamics of the ring
;a1 as a discrete time random walk along a lattice of cells, with each step Ak sampled randomly from
sz a distribution that depends on whether the incoming memory and reference bits are matched or
sas mismatched. The net result is that Ak can range from —2 to 42, with probabilities determined by the
:as values of 6 and I'. On average, each positive (negative) unit increment in k corresponds to CCW (CW)
a5 rotation of the ring by half a circle.
Following the considerations discussed above, we have computed the probability distribution for
Ak analytically, and from these results we have determined the average work performed by the ring,
per interaction interval (see Appendix A for details):

ntpI'é — mPI [3 coth(mPI') + csch(npTl)] + 4

W = 26

@)
In the limit of a weak external load, Eq. 7 gives
W = énl/2 (0<T < kgT) (8)

and the ring acts as an engine when § > 0, in agreement with the discussion in Sec. 2.3. In the opposite
limit of strong external load we get

W~ (6 —3)aT/2 (T > kgT) )

s hence W < 0, as expected. As a consistency check on Eq. 7, both of the limiting cases represented by
sz Egs. 8 and 9 can be verified by directly calculating the average displacement of 6p per period, resulting
sas  from the renewal mapping illustrated in Figs. 8 and 9.
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Figure 10. The phase diagram of the programmable Maxwell’s demon in the limit 7"t — co. Here
the behavior of the ring depends only on the sequence cleanness, ¢, and the external torque scaled by
bath temperature, BI'. For finite values of Tint the behavior of the ring depends separately on three
quantities B, I and 4.

Additionally, we can compute the fractions of bit-gate agreement and disagreement in the
outgoing tape:
O i) =
ern./g +1 7 out( 1 ) — ernﬁ—'_l.

In the limit of a strong external load (I' > kpT) virtually all outgoing bits will be forced to match the
reference bits, as each bit paddle becomes pinched between then ring’s blade and the engaging gate;
see Sec. 3.2. Per interaction period, the change of the Shannon entropy of the memory tape with respect

to the gate is
1-06 1-0 1494 1496
ASp = > 10g< 5 )—l— 5 log( 5 )

e P 1 e7BT 1 1 1
T 1108 (e”5r+1> T 1108 (e”ﬁr+1>
;a0 Where recall that the variable L = B Exy G is the Boolean equality between the state of the bit and the

=0 state of the gate (see Sec. 2.2).
Combining Egs. 7 and 11, we obtain (see Appendix B for details)

Pout(same) = (10)

(11)

Bl

W
ASL= T + tanh(7rpI'/2)

kBT = DKL [Pin’Pout}

-2 (12)
where Dg; > 0 is the Kullback-Leibler divergence [49] between the incoming and outgoing bit
distributions. Since x/ tanh(x) > 1 for all x # 0, Eq. 12 implies

W
kpASL — = >0 (13)

351 which is a strict inequality when I' # 0. Because the work W is equal to the average energy extracted
52 from the heat bath, per bit, the term —W /T represents the net change in the thermodynamic entropy
53 of bath. As a result, Eq. 13 can be viewed as a statement of the second law of thermodynamics: the
s sum of the entropy changes of the bit stream and heat bath must be non-negative. Notice that this
sss  interpretation relies on treating the information content of the bit stream (multiplied by kg) as a genuine
s thermodynamic entropy, on par with the Clausius entropy.
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Eq. 13 suggests natural definitions of the machine’s thermodynamic efficiency in both the engine
and the eraser mode. When the ring functions as an eraser, we have

W < kgTAS. <0 (14)
and the efficiency is defined as
eraser = BT <1 (15)
When the ring functions as an engine,
kpTASL > W >0 (16)
and the efficiency is defined as W

ﬂengine = m <1 (17)

a7 When the ring functions in the dud mode, W < 0 < kpTAS;.

358 In Fig. 11 we plot the thermodynamic efficiency over the phase diagram of the machine. By
0 definition # > 0 within the regions corresponding to the engine and eraser modes, but  drops to
0 zero at the boundaries of these regions, where the ring becomes a dud. For example, a point on the
s boundary of the engine mode, with J, BI' > 0, represents a stalled state. Here the ring generates just
32 enough CCW torque to match the CW torque exerted by the external load (hence W = 0), nevertheless
ses  there is a positive rate of entropy generation in the bit stream (AS; > 0). If the load I" is decreased by a
sea  small amount, then the ring will produce a slight CCW rotation, resulting in an engine with very low
ses  efficiency.

‘§—0.1

-10 205 00 05 10

o

Figure 11. Efficiency plot of the programmable demon, obtained analytically in the limit T™ — co.
Since efficiency is defined only for the eraser and engine modes, the dud region is left blank.

ses  4.3. Second law of thermodynamics in the slow moving limit

367 We have obtained Eq. 13 from our exact solution of the dynamics in the slow-moving limit, but
ses  the result has the character of a generalized, information-theoretic second law of thermodynamics (as
seo already mentioned), and its validity may extend to finite values of T™. While it is difficult to establish
s7o  this validity from first principles, we can make some progress by ignoring correlations (of any sort)
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s from one interval to the next, as we do in the following statistical treatment in which the variables B
sz and G are treated as information-bearing degrees of freedom [50].

373 At the start of an interaction interval, let P’ (b, ¢) denote the joint probability to find the memory
s bitin state b € {0,1} and the reference gate in state g € {0,1}, and let P§'(b) and P (g) denote the
s corresponding marginal distributions. Let Spg, Sp and S denote the Shannon entropies of these
ae  distributions.

Then
where )
. . PIZS"G
IIIBnG = ZPEE log pin pin >0 (19)
bg B~G

is the mutual information [51] between the bit and gate states. Defining similar quantities for the
outgoing states, the net change in the combined entropy over one interaction interval is

ASpg = ASg + ASg — Algg

(20)
= ASp — Alpg
s77 where ASpg = S%“Gt — S?G, etc. Since the state of the gate remains fixed we have AS; = 0, whereas
s7e  both Sp and Ip; typically change during the interaction interval.
We have used the variables B and G to specify the combined state of a memory and reference bit,
but we could equally well specify this state using the variables L and G, leading to

ASpc = AS ¢ = AS; — Al (21)

ss where AS;, AS| and I} are defined as above, but with L in place of B.
The Hamiltonian analysis of Ref. [28] (see in particular Eq. 47 therein) suggests that the change
in the Shannon entropy of the information-bearing degrees of freedom B and G obeys a generalized
second law of thermodynamics: W/kpT < ASps. Combining with Eq. 21 gives us

W < ASp — Aljg = ASp — 194 (22)

kgT
s0  Here we have used our assumption that incoming mismatches are statistical uncorrelated with the
;a1 state of the gate (Sec. 2.2) to set I’L’}; = 0. Since mutual information is non-negative, Eq. 22 immediately
sz implies Eq. 13, but note that Eq. 22 provides a stronger bound than Eq. 13. In effect, if correlations
;a3 develop between the reference gate G and the logical state L, then these correlations represent an
;e “unused” information-thermodynamic resource. In the slow-moving limit, these correlations vanish
ses  since the demon and bit fully equilibrate, hence Eq. 22 reduces to Eq. 13 in that limit.

sss 5. Our machine as a feedback controlled device

387 In previous sections we have presented our model as an autonomous system, whose various
;e components (paddles, gas particles, etc.) evolve without external interference. With a slight
se0  modification our model can serve to illustrate a non-autonomous device: a machine that is manipulated
30 via measurement and feedback. In this non-autonomous interpretation, the ring can again operate
so1  as an engine that lifts a mass against gravity, as we describe in Sec. 5.1. We then show how the
302 inequality given by Eq. 22 for the autnomous case, can be translated into an inequality that applies
303 to non-autonomous measurement and feedback, Eq. 26 below. Finally, in Sec. 5.3 we show how our
s0s  model can be modified to act as a non-autonomous device that uses the energy of a dropping mass to
305 write a desired target sequence to a stream of bits.
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Incoming random
sequence

Figure 12. A non-autonomous version of our model. The snapshot is taken right at the time of bit
renewal. The agent observes the state of the new bit (state 1) and simultaneously sets the gate 1 to be
effective. Thus the new bit can switch state only through the unblocked gate 0. In this illustration, the
agent’s measurement is faithful and thus the ring is able to work in the engine mode.

s0s  5.1. Feedback controlled engine

307 Consider a setup that is essentially the same as that described in Sec. 2, but without the sequence
s0s  Of rigid reference gates (the blue L-shaped bars in Fig. 3). In their place is a single, switchable gate
300 that can be set to block either one of the two gaps (in the red blocking bars) positioned at the vertical
a0 location of the ring. We will say that the gate is in the 0 state when it blocks the gap at 6 = 0, and in
a1 the T state when it blocks the gap at 6 = 71; the latter case is depicted in Fig. 12.

a02 Throughout this section we assume that the incoming bits arrive in a fully randomized sequence,
203 with 0’s and 1’s distributed equally. We introduce an external agent who performs measurement and
a4 feedback on these bits; see Fig. 12. The agent observes each new bit as it arrives, and at the moment
a5 of bit renewal (when the incoming bit becomes the interacting bit) the agent sets the switchable gate
aws accordingly: if it observes the incoming bit to be in state 0 (or 1), it sets the switchable gate to state 0
a7 (or1).

a08 If the agent performs error-free measurements, faithfully identifying the state of each incoming
s bit, then from the perspective of the ring the situation is equivalent to the case § = 1 analyzed in Sec. 2.
a0 Namely, the blocked gate is matched with the state of the incoming bit so as to produce, during each
a1 interaction interval, a statistical bias in favor of CCW rotation. In the long run, this bias can cause a
a1z small mass to be lifted against gravity, systematically extracting energy from the heat bath and thereby
a3 reducing its entropy. Since (by assumption) the incoming bits arrive in a fully randomized sequence,
a1 the decrease in the entropy of the bath cannot be “paid for” by increasing the Shannon entropy of the
a5 bits. Rather, the model illustrates how an external agent, by performing measurement and feedback,
a1s  can rectify fluctuations to produce an apparent violation of the second law of thermodynamics. Of
a7 course there is no real violation, as the physical nature of the agent is not being taken into account —
as  like Maxwell, we have effectively inserted a “magical creature” into our model.

a19 We further generalize this scenario to include the possibility of measurement errors. For each
a20 incoming bit, let € denote the probability that the agent misidentifies the bit state and therefore blocks
a2z the “wrong” gate. This situation is equivalent to the one analyzed in Sec. 3.1, with § = 1 — 2e. For
a2 sufficiently small error rate € and load I', the machine may still lift the mass against gravity, despite the
423 mMeasurement errors.
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424 The non-autonomous model described in this section is similar to Maxwell’s original thought
a2 experiment, and even more so to the Szilard engine [33], in which an agent determines whether a
a2 gas particle is within the left or right half of a box, then appropriately attaches a mass that can be
«27 lifted by the expansion of the single-particle gas. In our model, the “expansion” of a bit paddle from
a2s the half-circle to the full circle during each interaction interval plays the role of the expansion of the
a0 single-particle gas in the Szilard model. Note, however, that in the case of the Szilard engine the
430 same gas particle is recycled from one iteration of the measurement-and-feedback process to the next,
a1 whereas our model uses a sequence of “gas particles” (incoming bits) that can act as a memory register.
sz This allows our model to act not only as an engine but also as a device that writes information, as we
a3 discuss in Sec. 5.3.

asa 5.2, The second law of thermodynamics with feedback control

438 We have noted the equivalence between the measurement-and-feedback scenario described in
as  Sec. 5.1 (with error rate €) and the autonomous engine of Sec. 3.1 (with § = 1 — 2¢). Let us use this
a7 equivalence to obtain a second law inequality for the measurement-and-feedback process.
As before, let Pl (b, g) denote the joint probability distribution describing the initial state of the
bit and blocked gate — just after the agent has measured the bit and set the gate accordingly. During
the interaction interval, 0 < t < 7™, the machine operates autonomously, hence (see Sec. 4.3)

W
—— < ASpg = ASg + ASp — Alpg (23)
kgT
Since the gate state G does not change during the interaction interval, ASg = 0. Also, since the fully
randomized incoming bit stream contains equal populations of 0’s and 1’s, the same will be true (by
symmetry) of the outgoing bit stream, hence S = 59" = log2, and ASg = 0. We thus get

W

kBiT < —Alpg = I;BnG - Iglg (24)

The initial mutual information is simply the information gained by the measurement process:
[0 = Lyeas = log2 + (1 —€) log(1 — €) + eloge (25)

The final mutual information quantifies the degree to which B and G remain correlated at the end of
the interval; we will refer to this value as the residual information: I,.s = Igbg. We thus have

W
kBiT S Imeas - IYESI (26)

i.e. the extracted work W is bounded by the amount of information gathered during the measurement,
minus the amount “left over” at the end of the interval. Hence the gathered information is a
thermodynamic resource, and the difference Ij;eqs — Ires represents the amount of that resource that is
consumed, per interaction interval. Since I;,s > 0, Eq. 26 immediately implies the weaker bound

W
kBiT S Imeus- (27)

438 Eq. 27 was originally derived within the framework of stochastic thermodynamics by Sagawa
a0 and Ueda in Refs. [26,27], and Eq. 26 was subsequently obtained by the same authors in Refs. [29,52].
a0 We also note that the net change in the mutual information between the bit and the gate, Alpg, can be
s interpreted as the integrated information flow, within the bipartite approach developed by Horowitz and
a2 Esposito [30]. This information flow is negative (hence Ieqs — Ires > 0 ), as information is consumed
a3 to extract energy to lift the mass.
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aaa  5.3. Feedback controlled information recorder

445 In the eraser mode discussed in Sec. 3.2, our autonomous machine removes randomness from
ass  the incoming bit stream, replacing it with a preprogrammed sequence encoded in the reference gates.
sz In the present context of an externally manipulated machine, let us imagine that the agent desires
as  to write a particular target sequence, e.g. 011010 - - -, to the bit stream. The agent does not perform
a9 measurements on the incoming bits, but as each bit arrives the agent sets the switchable gate to match
a0 the corresponding element of the target sequence. Then, as in Sec. 3.2, the CW torque produced by the
s gravitational pull of the mass produces a tendency to set the state of the interacting bit to match the
a2 desired target value, through the “pinching” mechanism illustrate in Fig. 5. The fidelity of the writing
453 process increases with the torque I' generated by the gravitational force on the mass, and the energy of
«sa  the dropping mass is dissipated into the heat bath.

a5 6. Concluding remarks

as6 In this paper we have presented a model of a programmable, mechanical Maxwell’s demon,
«s7 that can be interpreted either as an autonomous device, as described in Sections 2 - 4, or as a
sss  non-autonomous device manipulated by external measurement and feedback control, as in Section 5.
aso  For these distinct interpretations, we have obtained distinct forms of the second law of thermodynamics,
w0 represented by Egs. 22 and 26. While these results have been obtained within the specific context of
asx our model, it would be useful to investigate whether they point to more general thermodynamic laws,
sz in situations involving both autonomous and non-autonomous (i.e. feedback-controlled) devices. For
63 instance, as indicated in Sec. 5.2, the inequalities given by Eqgs. 26 and 27 have been obtained previously
ses under assumptions of bipartite, Markovian dynamics [26,27,29,30,52]. By contrast, we have obtained
ses these results within a Newtonian model of colliding particles and paddles, which suggests that they
sss might be derived more generally within a classical, Hamiltonian framework.

a67 Additionally, we have obtained analytical results for the work delivered by our device, Eq. 7,
ss and the change in the Shannon entropy of the bits, Eq. 11, in the limit of a slowly-moving stream
w0 Of bits, 7™ — oco. For finite ™, the interactions between the bits and the demon may induce
w70 statistical correlations among the outgoing bits. Such correlations, which could in principle act as
ann  a thermodynamic resource, have not been considered in our analysis. It would be interesting to
a2 investigate how these correlations might affect the inequalities that we have derived.
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e Appendix Work delivered per interaction interval.

a77 To compute the mean work that our device delivers to life a mass against gravity, we must
aze  compute the mean angular displacement of the ring per interaction interval. This displacement can
aro  be determined by considering the transition from the end of an interaction interval (see Fig. 8) to
w0 the beginning of the next interaction interval (see Fig. 9). Recall that during a particular interaction
s interval, the composite system is confined within a single cell in (6p, 6p )-space, as illustrated by the
a2 shaded region in Fig. 8(a). At the moment of bit renewal the value of 6p changes suddenly, hence the
a3 system may find itself in a different cell immediately after bit renewal, as illustrated in Fig. 9(a). We
«sa characterize this transition by the change Ak in the cell index. At a coarse-grained level the evolution
ass  of the system from one interval to the next becomes a random walk of discrete jumps in k-space.

486 Here we compute the probability of the jumps conditioned on the agreement or disagreement
sz between the state of the bit and its corresponding gate. At the moment of bit renewal, the state of the
ass  system can either remain in the same cell (Ak = 0), it can jump up or down by one cell (Ak = £1), or up
a0 or down by two cells (Ak = £2). Note however that the value Ak = +2 is possible only if the incoming
400 bit matches the incoming gate (as in Fig. 9), and the value Ak = —2 can occur only if the bit and gate
«1 are mismatched. To illustrate how to compute the probabilities of these various events, let us imagine
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a2 that immediately after renewal, both the incoming bit and its reference gate are in the 0 state. Then
03 the probability distribution for the system is partitioned among the four shaded regions appearing in
a2 Fig. 9(a), each of which corresponds to a particular value of Ak, and the distribution within each of
s these cells is inherited from the equilibrium distribution just prior to bit renewal (Fig. 8). By integrating
ass over the distribution within each region, and then summing over all possible combinations of incoming
207 bit and gate, we obtain the following results.

When the incoming bit agrees with its gate (e.g. bit=1 and gate=1 or bit=0 and gate=0), we have

7T + P (T —2) +2

same — PO,(_) _ Pl,i _ (A1)
+2 +2 +2 7TIBF (enﬁl" o 1)2 (enlBr + 1)
salme = PO’() _ Pl,i _ emPt [nlgr (67'[/31" — 3) + 2] —2 (A2)
" T BT (BT — 1) (BT 1)
same _ p0d _ pl1 _ P [T + P (—37pT + 2™FT —2)] (A3)
stay stay stay 7'[[31” (emgr _ 1)2 (ET(‘BF + 1)
Psalme = PO,(_) _ Pl,i _ 2Pl [T[:Br + en'Br(n.Br - 2) +2] (A4)
: o BT (T — 1) (76T 41)
pyre = P = pll =0 (A5)
If the incoming bit mismatches its gate, we find
diff — p01 _ pl0 _
pdiff = P01 = PO =0 (A6)
pdiff — p0T _ pl0 _ 7pr + ™ (7pr —2) +2 (A7)
+ +1 +1 7_[‘31_, (enﬁr . 1)2 (eﬂﬁr + 1)
pdiff = po1 _ p10 _ el [T (7P —3) +2] —2 (A8)
TS gr (e — 1) (7T 4-1)
oot 7BT (BT — 1) (e76T +1)
diff _ pod _ pto_ €7 [mBr +e™PT(mpr —2) + 2]
pdiff = p01 — pl0 — 5 (A10)
BT (e7PT — 1) (7P +1)
The net probability to take a step Ak at the moment of bit renewal is then given b
p y P & y
. 1496 1-6_4
Ra = P(same) - PR + Pin(diff) - PRI = —C pggme 1+ = C peli (Al1)

Over a long observation time, i.e. many interaction intervals, these discrete jumps in k-space
produce average rotations by amounts A8p = —27, — 7, 0, 71, 271, per time interval T, The average
work delivered per interval is simply the average rotation of the demon per interval multiplied, by the
external torque:

W =21l R+ nl-Ryy —nl-R_; —27aT-R_,
_ 7BLS — nBT [3coth(mpr) + csch(7pl)] + 4 (A12)
— 28
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ws  Appendix Compatibility with the second law of thermodynamics.

a99 Here we show that our analytical solution of the programmable demon in the slow-moving limit
soo Obeys the second law of thermodynamics.
For convenience, define x = § and y = (¢! — 1)/(e* + 1), where A = 7T Then Eq. 11 becomes

o l=x 1-x 14x 14x (1-y 1-y 14y 14y
ASL—21n2+21n2 (21n2+21r12 (A13)

and the dimensionless work done per bit (Eq. 7) is

BW — % - % Beoth(A) + csch(A)] + (Al4)
_x, 14y 172 1+y
=2 17y+2 2<y—|—y>l =y (A15)
Taking the difference, we get
1, 14y (14+x)(1—y) (1+x)(1—x)
AS; —BW =-2+—-1In 7-1-—1 — <7 ln— Al6
L=F y Moy 2N aeaTy T2 Ay (A16)
x+1. (1+x)/2 1-—x ( x)/2 1+y
= 1 In 1 -2 Al17
2 n(1+y)/2+ 2 —y/2 y 1oy (A17)

where x € [—1,+1] and y € (—1,+1). Note also that P;,(same/diff) = (1+ x)/2 (see Eq. 1) and
Pout(same/diff) = (1 £y)/2 (see Eq. 10), which allows us to rewrite the above expression as

1. 1+
ASL_ﬁwz DKL [Pin|Pout] +y1nﬁ -

(A18)
so  where Dg; > 0 is the Kullback-Leibler divergence [49] between the incoming and outgoing bit
so2 distributions.

Next, we show that

Inlfy 55y (A19)

y 1-y
by expanding the logarithm as an infinite series:

o ( q\n,n+1 =] n—+1
llnlﬂfzzl Z%Jrzy ) (A20)
y 1l-y y\ & n+1 —n+1
0 2n+1
iy, (A21)
Yyi—o2n+1
ol 2y2n
= >
Zn—l—l_o (A22)

where the equality is achieved when y = 0. Alternatively, we can rewrite the left side in terms of A:

Talty

A/2
= = i >
y 1l—-y tanh(A/2) 2 (tanh(/\/Z) 1) 20 (A23)
sos  where the last inequality follows since |a| > | tanha| for any real a.
504 We thus confirm that in the slow-moving limit, our Maxwell’s demon satisfies AS; — W > 0,
sos where the equality is achieved only when the external force is absent and the incoming sequence is
sos totally random.
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