Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Study of the Microstructure and Crack Evolution Behavior of Al-5Fe-1.5Er Alloy

Version 1 : Received: 19 November 2018 / Approved: 20 November 2018 / Online: 20 November 2018 (05:20:34 CET)

A peer-reviewed article of this Preprint also exists.

Li, M.; Shi, Z.; Wu, X.; Wang, H.; Liu, Y. Study of the Microstructure and Crack Evolution Behavior of Al-5Fe-1.5Er Alloy. Materials 2019, 12, 172. Li, M.; Shi, Z.; Wu, X.; Wang, H.; Liu, Y. Study of the Microstructure and Crack Evolution Behavior of Al-5Fe-1.5Er Alloy. Materials 2019, 12, 172.

Abstract

The microstructure of Al-5Fe-1.5Er alloy was characterized and analyzed by using XRD, SEM, TEM and EDS. The effect of microstructure on the behavior of crack initiation and propagation was investigated by in situ tensile testing. Results show that the microstructure consists of α-Al matrix, Al3Fe, Al4Er, eutectic phase Al3Fe + Al4Er, while the 1.5 wt.% Er was added in Al-5Fe alloy. The twin structure of the Al3Fe phase was observed, and the twin plane is {001}. Moreover, a continuous concave and convex interface structure of the Al4Er has been found. Al3Fe is in the form of a sheet with a clear gap inside.In situ tensile tests of the alloy at room temperature show that the crack initiation occured mainly in the Al3Fe phase, and that the crack propagation modes include intergranular and transgranular expansion. Crack transgranular expansion is due to the strong binding ability between Al4Er phases and surrounding organization, and the continuous concave and convex interface structure of the Al4Er provides a significant meshing effect on the matrix and eutectic structure.

Keywords

Al-5Fe-Er alloy; microstructure; in situ tension; crack evolution

Subject

Chemistry and Materials Science, Metals, Alloys and Metallurgy

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.