Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

ZIF Nanocrystal-Based SAW Electronic Nose to Detect Diabetes in Human Breath

Version 1 : Received: 7 November 2018 / Approved: 8 November 2018 / Online: 8 November 2018 (11:18:23 CET)

A peer-reviewed article of this Preprint also exists.

Bahos, F.A.; Sainz-Vidal, A.; Sánchez-Pérez, C.; Saniger, J.M.; Gràcia, I.; Saniger-Alba, M.M.; Matatagui, D. ZIF Nanocrystal-Based Surface Acoustic Wave (SAW) Electronic Nose to Detect Diabetes in Human Breath. Biosensors 2019, 9, 4. Bahos, F.A.; Sainz-Vidal, A.; Sánchez-Pérez, C.; Saniger, J.M.; Gràcia, I.; Saniger-Alba, M.M.; Matatagui, D. ZIF Nanocrystal-Based Surface Acoustic Wave (SAW) Electronic Nose to Detect Diabetes in Human Breath. Biosensors 2019, 9, 4.

Abstract

In the present work a novel, portable and innovative eNose composed of a surface acoustic wave (SAW) sensor array based ZIF-8, and ZIF-67 nanocrystals (pure and combined with gold nanoparticles) as sensitive layers has been tested as a non-invasive system to detect and differentiate disease markers, such as acetone, ethanol and ammonia, related with early diagnosis of diabetes mellitus through exhaled breath. The sensors have been prepared by spin coating, achieving continuous and homogenous sensitive layers. Low concentrations (5 ppm, 10 ppm and 25ppm) of the marker analytes were measured, obtaining high sensitivities, good reproducibility, short time response and fast signal recovery.

Keywords

eNose; gas sensor, SAW; Surface Acoustic Wave, Love wave, diabetes, breath, VOC, ZIF, Zeolite

Subject

Medicine and Pharmacology, Other

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.