Preprint
Article

AC Dielectric Strength of Mineral Oil-Based Fe3O4 and Al2O3 Nanofluids

This version is not peer-reviewed.

Submitted:

05 November 2018

Posted:

06 November 2018

You are already at the latest version

Abstract
This paper deals with experimental study of the influence of conductive (Fe3O4) and insulating (Al2O3) nanostructured particles at various concentrations on the dielectric strength of transformer mineral oil. The method of preparation and characterization of these nanofluids (NFs) through the measurements of zeta potential, the real and imaginary parts of dielectric constant as well as the concentration and size of nanoparticles using Scanning Electron Microscope (SEM) images of nanoparticles powders and Dispersive x-ray Spectroscopy (EDS) analysis are presented. Experimental findings reveal that these two types of nanoparticles materials significantly improve AC breakdown voltage and the magnitude of this improvement depends on the concentration, size and nature (material) of nanoparticles. For a given type of nanoparticles, the effect is more marked with the smallest nanoparticles. The conductive nanoparticles offer higher enhancement of dielectric strength compared with insulating nanoparticles based nanofluids. With Fe3O4, the breakdown voltage (BDV) can exceed twice that of mineral oil and it increases by more than 76% with Al2O3. The physicochemical mechanisms implicated in this improvement are discussed.
Keywords: 
AC dielectric strength; insulating oils; mineral oil-based nanofluids; statistical analysis; Weibull distribution; normal distribution
Subject: 
Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

587

Views

287

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated