Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Linear Versus Nonlinear Acoustic Probing of Plasticity in Metals: A Quantitative Assessment

Version 1 : Received: 25 October 2018 / Approved: 26 October 2018 / Online: 26 October 2018 (08:17:02 CEST)

A peer-reviewed article of this Preprint also exists.

Espinoza, C.; Feliú, D.; Aguilar, C.; Espinoza-González, R.; Lund, F.; Salinas, V.; Mujica, N. Linear Versus Nonlinear Acoustic Probing of Plasticity in Metals: A Quantitative Assessment. Materials 2018, 11, 2217. Espinoza, C.; Feliú, D.; Aguilar, C.; Espinoza-González, R.; Lund, F.; Salinas, V.; Mujica, N. Linear Versus Nonlinear Acoustic Probing of Plasticity in Metals: A Quantitative Assessment. Materials 2018, 11, 2217.

Abstract

The relative dislocation density of aluminum and copper samples is quantitatively measured using linear Resonant Ultrasound Spectroscopy (RUS). For each metallic group, four samples were prepared with different thermomechanical treatments in order to induce changes in their dislocation densities. The RUS results are compared with Nonlinear Resonant Ultrasound Spectroscopy (NRUS) as well as Second Harmonic Generation (SHG) measurements. NRUS has a higher sensitivity by a factor of two to six and SHG by 14% to 62%. The latter technique is, however, faster and simpler. As main a result we obtain a quantitative relation between the changes in the nonlinear parameters and the dislocation density variations, which in a first approximation is a linear relation between these differences. We also present a simple theoretical expression that explains the better sensitivity to dislocation content of the nonlinear parameters with respect to the linear ones. X-Ray diffraction measurements, although intrusive and less accurate, support the acoustics results.

Keywords

alloys; nondestructive testing; dislocation density; plasticity; ultrasound; nonlinear acoustics

Subject

Physical Sciences, Acoustics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.