Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Oxygen Saturation measurements from Green and Orange Illuminations of Multi-Wavelength Optoelectronic Patch Sensor

Version 1 : Received: 21 October 2018 / Approved: 24 October 2018 / Online: 24 October 2018 (14:12:21 CEST)

A peer-reviewed article of this Preprint also exists.

Alharbi, S.; Hu, S.; Mulvaney, D.; Barrett, L.; Yan, L.; Blanos, P.; Elsahar, Y.; Adema, S. Oxygen Saturation Measurements from Green and Orange Illuminations of Multi-Wavelength Optoelectronic Patch Sensors. Sensors 2019, 19, 118. Alharbi, S.; Hu, S.; Mulvaney, D.; Barrett, L.; Yan, L.; Blanos, P.; Elsahar, Y.; Adema, S. Oxygen Saturation Measurements from Green and Orange Illuminations of Multi-Wavelength Optoelectronic Patch Sensors. Sensors 2019, 19, 118.

Abstract

Photoplethysmography (PPG) based pulse oximetry devices normally use red and infrared illuminations to obtain oxygen saturation (SpO2) readings. In addition, the presence of motion artefacts severely restricts the utility of pulse oximetry physiological measurements. In the current study, a combination of green and orange illuminations from a multi-wavelength optoelectronic patch sensor (mOEPS) was investigated in order to improve robustness to subjects’ movements in the extraction of SpO2 measurement. Two experimental protocols with 31 healthy subjects were designed to determine SpO2 measurement. The datasets for the first protocol were collected from 15 subjects at rest, with the subjects free to move their hands. The datasets for the second protocol with 16 subjects were collected during cycling and running exercises. The results showed good agreements with SpO2 measurements (r = 0.98) in the both protocols. The outcomes promise a robust and cost-effective approach of physiological monitoring with the prospect of providing health monitoring that does not restrict user physical movements.

Keywords

Oxygen Saturation (SpO2); Green and Orange Illuminations; Optoelectronic Patch; Sensor (mOEPS); Pulse Oximetry; Physical Movement.

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.