Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Accuracy Assessment of Digital Terrain Model Datasets Sources for Hydrogeomorphological Modelling at Mediterranean Catchments

Version 1 : Received: 24 October 2018 / Approved: 24 October 2018 / Online: 24 October 2018 (08:27:47 CEST)

A peer-reviewed article of this Preprint also exists.

Graf, L.; Moreno-de-las-Heras, M.; Ruiz, M.; Calsamiglia, A.; García-Comendador, J.; Fortesa, J.; López-Tarazón, J.A.; Estrany, J. Accuracy Assessment of Digital Terrain Model Dataset Sources for Hydrogeomorphological Modelling in Small Mediterranean Catchments. Remote Sens. 2018, 10, 2014. Graf, L.; Moreno-de-las-Heras, M.; Ruiz, M.; Calsamiglia, A.; García-Comendador, J.; Fortesa, J.; López-Tarazón, J.A.; Estrany, J. Accuracy Assessment of Digital Terrain Model Dataset Sources for Hydrogeomorphological Modelling in Small Mediterranean Catchments. Remote Sens. 2018, 10, 2014.

Abstract

Digital Terrain Models (DTMs) are currently a fundamental source of information in Earth Sciences. However, DTM-based studies can contain remarkable biases if limitations and inaccuracies of these models are disregarded. In this work, four freely available datasets such as SRTM C-SAR DEM, ASTER GDEM V2 and two airborne LiDAR derived DTMs (at 5 and 1 m spatial resolution, respectively) were analysed in a comparative study in three geomorphologically contrasted catchments located in Mediterranean geoecosystems under intensive human land use influence. Vertical accuracy as well as the influence of each dataset characteristics on hydrological and geomorphological modelling applicability were assessed by using classic geometric and morphometric parameters and the more recently proposed index of sediment connectivity. Overall vertical accuracy – expressed as Root Mean Squared Error (RMSE) and Normalized Median Deviation (NMAD) – revealed the highest accuracy in the cases of the 1 m (RMSE = 1.55 m; NMAD = 0.44 m) and 5 m LiDAR DTMs (RMSE = 1.73 m; NMAD = 0.84 m). Vertical accuracy of SRTM was lower (RMSE = 6.98 m; NMAD = 5.27 m) but considerably higher than in the case of ASTER (RMSE = 16.10 m; NMAD = 11.23 m). All datasets were affected by systematic distortions. As a consequence, propagation of these errors caused negative impacts on flow routing, stream network and catchment delineation and, to a lower extent, on the distribution of slope values. These limitations should be carefully considered when applying DTMs for hydrogeomorphological modelling.

Keywords

digital terrain models; DTM vertical accuracy; DTM comparison; hydrologeomorphological Modelling; Mediterranean catchments

Subject

Environmental and Earth Sciences, Remote Sensing

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.