Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Energy Consumption Optimization in Irrigation Networks Supplied by a Standalone Direct Pumping Photovoltaic System

Version 1 : Received: 17 October 2018 / Approved: 17 October 2018 / Online: 17 October 2018 (12:54:37 CEST)

A peer-reviewed article of this Preprint also exists.

Pardo Picazo, M.Á.; Juárez, J.M.; García-Márquez, D. Energy Consumption Optimization in Irrigation Networks Supplied by a Standalone Direct Pumping Photovoltaic System. Sustainability 2018, 10, 4203. Pardo Picazo, M.Á.; Juárez, J.M.; García-Márquez, D. Energy Consumption Optimization in Irrigation Networks Supplied by a Standalone Direct Pumping Photovoltaic System. Sustainability 2018, 10, 4203.

Abstract

Due to the fact that irrigation networks are water and energy-hungry and that both resources are scarce, many strategies have been developed to reduce this consumption. Otherwise, solar energy sources have become a green alternative with lower energy costs and, as a consequence, lower environmental impacts. In this work, it is proposed a new methodology to select the scheduled program for irrigation which minimizes the number of photovoltaic solar panels to be installed and which better fits energy consumption (calculated for discrete potential combinations; using a programming software to assist) to available energy obtained by panels without any power conditioning unit. So, the irrigation hours available to satisfy the water demands are limited by sunlight, the schedule type of irrigation has to be rigid (rotation predetermined) and the pressure at any node has to be above the minimum pressure required by standards. A real case study has been performed.

Keywords

Energy efficiency, Photovoltaic system, energy audit, rigid scheduled irrigation

Subject

Engineering, Civil Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.