Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

THz Sensing With Anomalous Extraordinary Optical Transmission Hole Arrays

Version 1 : Received: 1 October 2018 / Approved: 2 October 2018 / Online: 2 October 2018 (10:52:25 CEST)

A peer-reviewed article of this Preprint also exists.

Jáuregui-López, I.; Rodriguez-Ulibarri, P.; Kuznetsov, S.A.; Nikolaev, N.A.; Beruete, M. THz Sensing With Anomalous Extraordinary Optical Transmission Hole Arrays. Sensors 2018, 18, 3848. Jáuregui-López, I.; Rodriguez-Ulibarri, P.; Kuznetsov, S.A.; Nikolaev, N.A.; Beruete, M. THz Sensing With Anomalous Extraordinary Optical Transmission Hole Arrays. Sensors 2018, 18, 3848.

Abstract

Subwavelength hole array (HA) metasurfaces support the so-called extraordinary optical transmission (EOT) resonance that has already been exploited for sensing. In this work, we demonstrate the superior performance of a different resonant regime of HA metasurfaces called anomalous EOT, by doing a thorough numerical and experimental study of its ability as a thin-film label-free sensor in the terahertz (THz) band. A comprehensive analysis using both the regular and anomalous EOT resonances is done by depositing thin layers of a dielectric analyte of different thicknesses on the structures in different scenarios. We carry out a detailed comparison and demonstrate that the best sensing performance is achieved when the structure operates in the anomalous EOT resonance and the analyte is deposited on the non-patterned side, improving by a factor between 2 and 3 the results of the EOT resonance in any of the considered scenarios. This can be explained by the comparatively narrower linewidth of the anomalous EOT resonance. The results presented expand the reach of subwavelength hole arrays for sensing applications by considering the anomalous EOT regime that is usually overlooked in the literature.

Keywords

metasurface; sensing; thin film; terahertz; anomalous EOT

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.