Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Magnetic Alginate / Chitosan Nanoparticles for Targeted Delivery of Curcumin into Human Breast Cancer Cells

Version 1 : Received: 27 September 2018 / Approved: 28 September 2018 / Online: 28 September 2018 (09:26:48 CEST)

A peer-reviewed article of this Preprint also exists.

Song, W.; Su, X.; Gregory, D.A.; Li, W.; Cai, Z.; Zhao, X. Magnetic Alginate/Chitosan Nanoparticles for Targeted Delivery of Curcumin into Human Breast Cancer Cells. Nanomaterials 2018, 8, 907. Song, W.; Su, X.; Gregory, D.A.; Li, W.; Cai, Z.; Zhao, X. Magnetic Alginate/Chitosan Nanoparticles for Targeted Delivery of Curcumin into Human Breast Cancer Cells. Nanomaterials 2018, 8, 907.

Abstract

Curcumin is a promising anti-cancer drug but its applications in cancer therapy are limited due to its poor solubility, short half-life and low bioavailability. In this study, curcumin loaded magnetic alginate / chitosan nanoparticles were fabricated to improve the bioavailability, uptake efficiency and cytotoxicity of curcumin to MDA-MB-231 breast cancer cells. Alginate and chitosan were deposited on Fe3O4 magnetic nanoparticles based on their electrostatic properties. The sizes of the nanoparticles (120-200 nm) were within the optimum range for drug delivery. Sustained curcumin release was obtained use the nanoparticles with the ability to control the curcumin release rate by altering the number of chitosan and alginate layers. Confocal fluorescence microscopy results showed that targeted delivery of curcumin with the aid of magnetic field were achieved. The FACS assay indicated that MDA-MB-231 cells treated with curcumin loaded nanoparticles had a 3-6 folds uptake efficiency to those treated with free curcumin. MTT assay indicated that the curcumin loaded nanoparticles exhibited significantly higher cytotoxicity toward MDA-MB-231 cells than toward HDF cells. The sustained release profiles, enhanced uptake efficiency and cytotoxicity to cancer cells as well as the targeting potential make MACPs a promising candidate for cancer therapy.

Keywords

Alginate, Chitosan, Layer-by-layer, Magnetic nanoparticles, Drug delivery, Cancer, Curcumin

Subject

Chemistry and Materials Science, Nanotechnology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.