Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Hydrogen Oxidation on Ni-Based Electrocatalysts: The Effect of Metal Doping

Version 1 : Received: 27 September 2018 / Approved: 27 September 2018 / Online: 27 September 2018 (04:59:46 CEST)

A peer-reviewed article of this Preprint also exists.

Davydova, E.S.; Zaffran, J.; Dhaka, K.; Toroker, M.C.; Dekel, D.R. Hydrogen Oxidation on Ni-Based Electrocatalysts: The Effect of Metal Doping. Catalysts 2018, 8, 454. Davydova, E.S.; Zaffran, J.; Dhaka, K.; Toroker, M.C.; Dekel, D.R. Hydrogen Oxidation on Ni-Based Electrocatalysts: The Effect of Metal Doping. Catalysts 2018, 8, 454.

Abstract

Carbon supported nanoparticles of monometallic Ni catalyst and binary Ni-Transition Metal (Ni-TM/C) electrocatalytic composites were synthesized via chemical reduction method, where TM stands for the doping elements Fe, Co, and Cu. The chemical composition, structure and morphology of the Ni-TM/C materials were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffractometry (XRD), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy (EDS). The electrochemical properties towards hydrogen oxidation reaction in alkaline medium were studied using the rotating disc electrode and cycling voltammetry methods. A significant role of the TM dopant in the promotion of the hydrogen electrooxidation kinetics of the binary Ni-TM/C materials were revealed. A record-high in exchange current density value of 0.060 mA cm2Ni was measured for Ni3Fe1/C, whereas the monometallic Ni/C counterpart has only shown 0.039 mA cm2Ni. In order to predict the feasibility of the electrocatalysts for hydrogen chemisorption, density functional theory was applied to calculate the hydrogen binding energy and hydroxide binding energy values for bare Ni and Ni3TM1.

Keywords

metal doping; nickel-based catalyst; transition metals; synthesis; hydrogen oxidation reaction; exchange current density; alkaline medium; DFT; hydrogen binding energy; hydroxide binding energy

Subject

Chemistry and Materials Science, Electrochemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.