Chiu, C.-H.; Tong, Y.-W.; Yeh, W.-L.; Lei, K.F.; Chen, A. .-Y. Self-Renewal and Differentiation of Adipose-Derived Stem Cells (ADSCs) Stimulated by Multi-Axial Tensile Strain in a Pneumatic Microdevice. Micromachines2018, 9, 607.
Chiu, C.-H.; Tong, Y.-W.; Yeh, W.-L.; Lei, K.F.; Chen, A. .-Y. Self-Renewal and Differentiation of Adipose-Derived Stem Cells (ADSCs) Stimulated by Multi-Axial Tensile Strain in a Pneumatic Microdevice. Micromachines 2018, 9, 607.
Chiu, C.-H.; Tong, Y.-W.; Yeh, W.-L.; Lei, K.F.; Chen, A. .-Y. Self-Renewal and Differentiation of Adipose-Derived Stem Cells (ADSCs) Stimulated by Multi-Axial Tensile Strain in a Pneumatic Microdevice. Micromachines2018, 9, 607.
Chiu, C.-H.; Tong, Y.-W.; Yeh, W.-L.; Lei, K.F.; Chen, A. .-Y. Self-Renewal and Differentiation of Adipose-Derived Stem Cells (ADSCs) Stimulated by Multi-Axial Tensile Strain in a Pneumatic Microdevice. Micromachines 2018, 9, 607.
Abstract
Adipose-derived stem cells (ADSCs) were suggested for treating degenerative osteoarthritis, suppressing inflammatory responses, and repairing damaged soft tissues. Moreover, the ADSCs have the potential to undergo self-renewal and differentiate into bone, tendon, cartilage, and ligament. Recently, investigation of the self-renewal and differentiation of the ADSCs becomes an attractive area. In this work, a pneumatic microdevice has been developed to study the gene expression of the ADSCs after the stimulation of multi-axial tensile strain. The ADSCs were cultured on the microdevice and experienced multi-axial tensile strain during a 3-day culture course. Self-renewal and differentiation abilities were investigated by mRNA expressions of NANOG, SOX2, OCT4, SOX9, PPAR-γ, and RUNX2. The result showed that the genes related self-renewal were significantly up-regulated after the tensile stimulation. Higher proliferation ratio of the ADSCs was also shown by cell viability assay. The microdevice provides a promising platform for cell-based study under mechanical tensile stimulation.
Biology and Life Sciences, Cell and Developmental Biology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.