Conventional models do not fully explain composition of the solar system—for example, the presence of such elements as certain post-post-$Fe$-nuclei remains not yet understood. We propose a mechanism which can explain appearance of non-native elements in the solar system. The hypothesis involves an explosive nuclear-fission-type event within the inner part of the solar system that resulted from the system’s path-crossing with a traveling-from-afar compact stellar object—a “giant nuclear drop” capable of phase-transitioning into unstable nuclear-fog state, which was triggered by the encounter. After the multitude of spontaneous reaction cascades and variety of nuclei transformations (such as nuclei fragmentation, fission, fusion, $n$-, $p$-, $\alpha$-, $\gamma$-capture, and various decays), the “debris” enriched the solar system and led to the eventual formation of the terrestrial planets that pre-event had not existed. Such scenario offers a possible explanation for the planets’ inner position and compositional differences within the predominantly hydrogen-helium rest of the solar system.