Preprint
Article

This version is not peer-reviewed.

Exponents of spectral functions in the one-dimensional Bose gas

A peer-reviewed article of this preprint also exists.

Submitted:

20 September 2018

Posted:

20 September 2018

You are already at the latest version

Abstract
The one-dimensional gas of bosons interacting via a repulsive contact potential was solved long ago via Bethe's ansatz by Lieb and Liniger [Phys. Rev. {\bf 130}, 1605 (1963)]. The low energy excitation spectrum is a Luttinger liquid parametrized by a conformal field theory with conformal charge $c=1$. For higher energy excitations the spectral function displays deviations from the Luttinger behavior arising from the curvature terms in the dispersion. Adding a corrective term of the form of a mobile impurity coupled to the Luttinger liquid modes corrects this problem. The ``impurity'' term is an irrelevant operator, which if treated non-perturbatively, yields the threshold singularities in the one-particle and one-hole hole Green's function correctly. We show that the exponents obtained via the finite size corrections to the ground state energy are identical to those obtained through the shift function.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated