Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Hemodynamics in Cardiac Development

Version 1 : Received: 17 September 2018 / Approved: 17 September 2018 / Online: 17 September 2018 (13:45:32 CEST)

A peer-reviewed article of this Preprint also exists.

Poelmann, R.E.; Gittenberger-de Groot, A.C. Hemodynamics in Cardiac Development. J. Cardiovasc. Dev. Dis. 2018, 5, 54. Poelmann, R.E.; Gittenberger-de Groot, A.C. Hemodynamics in Cardiac Development. J. Cardiovasc. Dev. Dis. 2018, 5, 54.


The beating heart is subject to intrinsic mechanical factors, exerted by contraction of the myocardium (stretch and strain) and fluid forces of the enclosed blood (wall shear stress). The earliest contractions of the heart occur already in the 10-somite stage in the tubular as yet unsegmented heart. With development the looping heart becomes asymmetric providing varying diameters and curvatures resulting in unequal flow profiles. These flow profiles exert various wall shear stresses and as a consequence different expression patterns of shear responsive genes. In this paper we investigate the morphological changes of the heart after changes the blood flow by ligation of the right vitelline vein in a model chicken embryo and analyze the extended expression in the endocardial cushions of the shear responsive gene Tgfbeta receptor III. A major phenomenon is the diminished endocardial-mesenchymal transition resulting in hypoplastic (even absence of) atrioventricular and outflow tract endocardial cushions, that might be lethal in early phases. The surviving embryos exhibit several cardiac malformations including ventricular septal defects and malformed semilunar valves related to a malposition of the aortopulmonary septum and the enclosed neural crest cells. We discuss the results in the light of the interactions between several shear stress responsive signaling pathways including Vegf, Notch, Pdgf, Klf2, eNos, Endothelin and Tgfβ/Bmp/Smad.


cardiogenesis, endocardial cushions, neural crest, hemodynamics, shear stress, semilunar valve, outflow tract septum, Klf2, growth factors, Transforming growth factor


Medicine and Pharmacology, Cardiac and Cardiovascular Systems

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0

Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.