Preprint Review Version 1 This version is not peer-reviewed

In Situ Synthesis of Hybrid Inorganic-Polymer Nanocomposites

Version 1 : Received: 14 September 2018 / Approved: 14 September 2018 / Online: 14 September 2018 (13:38:47 CEST)

A peer-reviewed article of this Preprint also exists.

Adnan, M.M.; Dalod, A.R.M.; Balci, M.H.; Glaum, J.; Einarsrud, M.-A. In Situ Synthesis of Hybrid Inorganic–Polymer Nanocomposites. Polymers 2018, 10, 1129. Adnan, M.M.; Dalod, A.R.M.; Balci, M.H.; Glaum, J.; Einarsrud, M.-A. In Situ Synthesis of Hybrid Inorganic–Polymer Nanocomposites. Polymers 2018, 10, 1129.

Journal reference: Polymers 2018, 10, 1129
DOI: 10.3390/polym10101129

Abstract

Hybrid inorganic-polymer nanocomposites can be employed in diverse applications due to the potential combination of desired properties from both the organic and inorganic components. The use of novel bottom-up in situ synthesis methods for the fabrication of these nanocomposites is advantageous compared to top-down ex situ mixing methods, as it offers increased control over the structure and properties of the material. In this review, the focus will be on the application of the sol-gel process for the synthesis of inorganic oxide nanoparticles in epoxy and polysiloxane matrices. The effect of the synthesis conditions and the reactants used on the inorganic structures formed, the interactions between the polymer chains and the inorganic nanoparticles, and the resulting properties of the nanocomposites are appraised from several studies over the last two decades. Lastly, alternative in situ techniques and the applications of various polymer-inorganic oxide nanocomposites are briefly discussed.

Subject Areas

nano hybrids, nanocomposites, sol-gel, in situ synthesis, metal oxides

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.