Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Risk Assessment of Soil Salinization due to Tomato Cultivation in Mediterranean Climate Conditions

Version 1 : Received: 11 September 2018 / Approved: 11 September 2018 / Online: 11 September 2018 (15:29:31 CEST)

A peer-reviewed article of this Preprint also exists.

Libutti, A.; Cammerino, A.R.B.; Monteleone, M. Risk Assessment of Soil Salinization Due to Tomato Cultivation in Mediterranean Climate Conditions. Water 2018, 10, 1503. Libutti, A.; Cammerino, A.R.B.; Monteleone, M. Risk Assessment of Soil Salinization Due to Tomato Cultivation in Mediterranean Climate Conditions. Water 2018, 10, 1503.

Abstract

Mediterranean climate is marked by arid climate conditions in summer, therefore, crop irrigation is crucial to sustain plant growth and productivity in this season. If groundwater is utilized for irrigation, an impressive water pumping is needed to satisfy crop water requirements at catchment scale. Consequently, irrigation water quality gets worse, specifically considering groundwater salinization near the coastal areas due to seawater intrusion, also triggering soil salinization. With reference to an agricultural coastal area in the Mediterranean basin (Southern Italy), close to the Adriatic sea, an assessment of soil salinization risk due to processing tomato cultivation was carried out. A simulation model was arranged to perform, on daily basis, a water and salt balance along the soil profile. Long-term weather data and soil physical parameters representative of the considered area were utilized in applying the model, also considering three salinity levels of irrigation water. Based on the climatic analysis performed and the model outputs, the probability of soil salinity came out very high, such as to seriously threaten tomato yield. Autumn-winter rainfall resulted frequently insufficient to leach excess salts away from the soil profile and reach sustainable conditions of tomato cultivation. Therefore, alternative cropping strategies were prospected.

Keywords

groundwater salinization; soil salinization; salinization risk assessment; climate analysis; water balance; salinity balance; salt leaching; processing tomato; crop yield decrease.

Subject

Biology and Life Sciences, Agricultural Science and Agronomy

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.