Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

UV sensitization of nitrate and sulfite: A powerful tool for groundwater remediation

Version 1 : Received: 3 September 2018 / Approved: 3 September 2018 / Online: 3 September 2018 (13:45:12 CEST)

A peer-reviewed article of this Preprint also exists.

Lester, Y.; Dabash, A.; Eghbareya, D. UV Sensitization of Nitrate and Sulfite: A Powerful Tool for Groundwater Remediation. Environments 2018, 5, 117. Lester, Y.; Dabash, A.; Eghbareya, D. UV Sensitization of Nitrate and Sulfite: A Powerful Tool for Groundwater Remediation. Environments 2018, 5, 117.

Abstract

Groundwater contamination by nitrate and organic chemicals (e.g. 1,4-dioxane) is a growing worldwide concern. This work presents a new approach for simultaneously treating nitrate and 1,4-dioxane, which is based on UV sensitization of nitrate and sulfite, and the production of reactive species. Specifically, water contaminated with nitrate and 1,4-dioxane is irradiated by a UV source (< 250 nm) at relatively high doses, to sensitize in-situ nitrate and generate HO•. This leads to the oxidation of 1,4-dioxane (and other organics), and the (undesired) production of nitrite as an intermediate. Subsequently, sulfite is added at an optimized time-point, and its UV sensitization produces hydrated electrons which reacts and reduces nitrite. Our results confirmed the effectivity of the proposed treatment: UV irradiation of nitrate (at > 5 mg N/L) efficiently degraded 1,4-dioxane, while producing nitrite at levels higher than 1 mg N/L (its MCL in drinking water). Adding sulfite to the process after 10 minutes of irradiation reduced the concentration of nitrite, without affecting the degradation rate of 1,4-dioxane. The treated water contained elevated levels of sulfate; albeit at much lower concentration than its MCL. Treating water contaminated with nitrate and organic chemicals (often detected concomitantly) typically requires several (expensive) treatment processes. The proposed approach may present a cost-effective alternative, employing a single system for the treatment of nitrate and organic contaminants

Keywords

Photo-sensitization; nitrate; sulfite, 1,4-dioxane, groundwater

Subject

Chemistry and Materials Science, Applied Chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.