PreprintReviewVersion 1Preserved in Portico This version is not peer-reviewed
Effects of Leucine Metabolite (Β-Hydroxy-Β-Methylbutyrate) Supplementation and Resistance Training on Cardiovascular Risk Factors, Oxidative Stress, and Inflammatory Markers: a Review on Recent Literature
Arazi, H.; Taati, B.; Suzuki, K. A Review of the Effects of Leucine Metabolite (β-Hydroxy-β-methylbutyrate) Supplementation and Resistance Training on Inflammatory Markers: A New Approach to Oxidative Stress and Cardiovascular Risk Factors. Antioxidants2018, 7, 148.
Arazi, H.; Taati, B.; Suzuki, K. A Review of the Effects of Leucine Metabolite (β-Hydroxy-β-methylbutyrate) Supplementation and Resistance Training on Inflammatory Markers: A New Approach to Oxidative Stress and Cardiovascular Risk Factors. Antioxidants 2018, 7, 148.
Arazi, H.; Taati, B.; Suzuki, K. A Review of the Effects of Leucine Metabolite (β-Hydroxy-β-methylbutyrate) Supplementation and Resistance Training on Inflammatory Markers: A New Approach to Oxidative Stress and Cardiovascular Risk Factors. Antioxidants2018, 7, 148.
Arazi, H.; Taati, B.; Suzuki, K. A Review of the Effects of Leucine Metabolite (β-Hydroxy-β-methylbutyrate) Supplementation and Resistance Training on Inflammatory Markers: A New Approach to Oxidative Stress and Cardiovascular Risk Factors. Antioxidants 2018, 7, 148.
Abstract
β-hydroxy β-methylbutyrate (HMB) is a bioactive metabolite formed from breakdown of the branched-chain amino acid leucine. Given the popularity of HMB supplements among different athletes, specifically, those who engage in regular resistance training, this review was performed to summarize current literature on some aspects of HMB supplementation that have received less attention. Because of the small number of published studies, it has not been possible to conclude the exact effects of HMB on cardiovascular parameters, oxidative stress and inflammatory markers. Thus, the interpretation of outcomes should be taken cautiously. However, the data presented here suggest that acute HMB supplementation may attenuate pro-inflammatory response following an intense resistance exercise in athletes. Also, the available findings collectively indicate that chronic HMB consumption in conjunction with resistance training has no more adaptive advantages associated with decreasing cardiovascular risk factors and oxidative stress markers. Taken together, there is clearly a need for further well-designed, longer duration studies to support these findings and determine whether HMB supplementation affects the adaptations induced by resistance training associated with body’s inflammatory condition, antioxidative defense system, and cardiovascular risk factors in humans.
Biology and Life Sciences, Immunology and Microbiology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.