Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Effect of Cavity Vacuum Pressure Diminution on Thermal Performance of Triple Vacuum Glazing

Version 1 : Received: 22 August 2018 / Approved: 23 August 2018 / Online: 23 August 2018 (06:35:23 CEST)

A peer-reviewed article of this Preprint also exists.

Memon, S.; Farukh, F.; Kandan, K. Effect of Cavity Vacuum Pressure Diminution on Thermal Performance of Triple Vacuum Glazing. Appl. Sci. 2018, 8, 1705. Memon, S.; Farukh, F.; Kandan, K. Effect of Cavity Vacuum Pressure Diminution on Thermal Performance of Triple Vacuum Glazing. Appl. Sci. 2018, 8, 1705.

Abstract

Long-term durability of the vacuum edge-seal plays a significant part in retrofitting triple vacuum glazing (TVG) to existing buildings in achieving towards zero-energy buildings (ZEB) target. Vacuum pressure decrement with respect to time between panes affect the thermal efficiency of TVG. This study reports a 3D finite element model, with validated mathematical methods and comparison, for the assessment of the influence of vacuum pressure diminution on the thermal transmittance (U value) of TVG. The centre-of-pane and total U values of TVG calculated to be 0.28 Wm−2K−1 and 0.94 Wm−2K−1 at the cavity vacuum pressure of 0.001 Pa. The results suggests that a rise in cavity pressure from 0.001 Pa to 100 kPa increases the centre-of-pane and total U values from 0.28 Wm−2K−1 and 0.94 Wm−2K−1 to 2.4 Wm−2K−1 and 2.58 Wm−2K−1, respectively. The temperature descent on the surfaces of TVG between hot and cold sides’ increases by decreasing the cavity vacuum pressure from 50 kPa to 0.001 Pa. To maintain the cavity vacuum pressure of 0.001 Pa for over 20 years of life span in the cavity of 10 mm wide edge sealed triple vacuum glazing, non-evaporable getters will maintain the cavity vacuum pressure that will enable the long-term durability to TVG.

Keywords

vacuum pressure; triple vacuum glazing; finite element modelling; thermal performance; towards zero-energy buildings

Subject

Physical Sciences, Applied Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.