Preprint Article Version 1 This version is not peer-reviewed

Evaluation of Gridded Multi-Satellite Precipitation (TRMM-3B42-V7) Estimation Performance in the Upper Indus Basin (UIB)

Version 1 : Received: 18 August 2018 / Approved: 19 August 2018 / Online: 19 August 2018 (03:53:47 CEST)

A peer-reviewed article of this Preprint also exists.

Khan, A.J.; Koch, M.; Chinchilla, K.M. Evaluation of Gridded Multi-Satellite Precipitation Estimation (TRMM-3B42-V7) Performance in the Upper Indus Basin (UIB). Climate 2018, 6, 76. Khan, A.J.; Koch, M.; Chinchilla, K.M. Evaluation of Gridded Multi-Satellite Precipitation Estimation (TRMM-3B42-V7) Performance in the Upper Indus Basin (UIB). Climate 2018, 6, 76.

Journal reference: Climate 2018, 6, 76
DOI: 10.3390/cli6030076

Abstract

The present study aims to evaluate the capability of the TRMM-3B42-(V7) precipitation product to estimate appropriate precipitation rates in the Upper Indus basin (UIB) and the analysis of the dependency of the estimates’ accuracies on the time scale. To that avail statistical analyses and comparison of the TMPA- products with gauge measurements in the UIB are carried out. The dependency of the TMPA estimates’ quality on the time scale is analysed by comparisons of daily, monthly, seasonal and annual sums for the UIB. The results show considerable biases in the TMPA- (TRMM) precipitation estimates for the UIB, as well as high false alarms and miss ratios. The correlation of the TMPA- estimates with ground-based gauge data increases considerably and almost in a linear fashion with increasing temporal aggregation, i.e. time scale. The BIAS is mostly positive for the summer season, while for the winter season it is predominantly negative, thereby showing a slight over-estimation of the precipitation in summer and under-estimation in winter. The results of the study suggest that, in spite of these discrepancies between TMPA- estimates and gauge data, the use of the former in hydrological watershed modelling, endeavoured presently by the authors, may be a valuable alternative in data- scarce regions, like the UIB, but still must be taken with a grain of salt.

Subject Areas

precipitation; tropical rainfall measurement mission (TRMM); multi-satellite precipitation analysis (TMPA); upper indus basin (UIB).

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.