Preprint Article Version 1 This version is not peer-reviewed

Real-Time Lossless Compression Algorithm for Ultrasound Data Using BL Universal Code

Version 1 : Received: 17 August 2018 / Approved: 17 August 2018 / Online: 17 August 2018 (12:55:05 CEST)

A peer-reviewed article of this Preprint also exists.

Kim, J.H.; Yeo, S.; Kim, J.W.; Kim, K.; Song, T.-K.; Yoon, C.; Sung, J. Real-Time Lossless Compression Algorithm for Ultrasound Data Using BL Universal Code. Sensors 2018, 18, 3314. Kim, J.H.; Yeo, S.; Kim, J.W.; Kim, K.; Song, T.-K.; Yoon, C.; Sung, J. Real-Time Lossless Compression Algorithm for Ultrasound Data Using BL Universal Code. Sensors 2018, 18, 3314.

Journal reference: Sensors 2018, 18, 3314
DOI: 10.3390/s18103314

Abstract

Software-based ultrasound imaging systems provide high flexibility that allows easy and fast adoption of newly developed algorithms. However, the extremely high data rate required for data transfer from sensors (e.g., transducers) to the ultrasound imaging systems is a major bottleneck in the software-based architecture, especially in the context of real-time imaging. To overcome this limitation, in this paper, we present a Binary cLuster (BL) code, which yields an improved compression ratio compared to the exponential Golomb code. Owing to the real-time encoding/decoding features without overheads, the universal code is a good solution to reduce the data transfer rate for software-based ultrasound imaging. The performance of the proposed method was evaluated using in vitro and in vivo data sets. It was demonstrated that the BL-beta code has a good stable lossless compression performance of 20 ~ 30% while requiring no auxiliary memory or storage.

Subject Areas

Medical ultrasound; Lossless compression; Universal code; Run-length encoding

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.