Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Rapidity of Genomic Adaptations to Prasinovirus Infection in a Marine Microalga

Version 1 : Received: 16 August 2018 / Approved: 17 August 2018 / Online: 17 August 2018 (12:26:51 CEST)

A peer-reviewed article of this Preprint also exists.

Yau, S.; Caravello, G.; Fonvieille, N.; Desgranges, É.; Moreau, H.; Grimsley, N. Rapidity of Genomic Adaptations to Prasinovirus Infection in a Marine Microalga. Viruses 2018, 10, 441. Yau, S.; Caravello, G.; Fonvieille, N.; Desgranges, É.; Moreau, H.; Grimsley, N. Rapidity of Genomic Adaptations to Prasinovirus Infection in a Marine Microalga. Viruses 2018, 10, 441.

Abstract

Prasinoviruses are large dsDNA viruses commonly found in aquatic systems worldwide, where they can infect and lyse unicellular prasinophyte algae such as Ostreococcus. Host susceptibility is virus strain-specific, but resistance of susceptible Ostreococcus tauri strains to a virulent virus arises frequently. In clonal resistant lines that re-grow, viruses are usually present for many generations, and genes clustered on chromosome 19 show physical rearrangements and differential expression. Here, we investigated changes occurring during the first two weeks after inoculation of viruses. By serial dilutions of cultures at the time of inoculation, we estimated the frequency of resistant cells arising in virus-challenged O. tauri cultures to be 10−3–10−4 of the inoculated population. Re-growing resistant cells were detectable by flow cytometry 3 days post-inoculation (dpi), visible re-greening of cultures occurred by 6 dpi, and karyotypic changes were visually detectable at 8 dpi. Resistant cell lines showed a modified spectrum of host-virus specificities and much lower levels of OtV5 adsorption.

Keywords

Ostreococcus tauri; Mamiellophyceae; Phycodnaviridae; resistance; karyotype; rearrangement; chromosome; specificity; host range; adsorption

Subject

Biology and Life Sciences, Immunology and Microbiology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.