Submitted:

11 August 2018

Posted:

14 August 2018

You are already at the latest version

Abstract
In this study, a full-scale pilot testing was performed with side-by-side operation of a conventional enhanced biological phosphorus removal (EBPR) process and a side-stream EBPR (S2EBPR) process. A comparison of the performance, activities and population dynamics of key functionally relevant populations between the two configurations were carried out. The results demonstrated that, with the same influent wastewater characteristics, S2EBPR configuration showed more effective and stable orthophosphate (PO4-P) removal performance (up to 94% with average effluent concentration down to 0.1 mg P/L) than conventional EBPR, especially when the mixers in side-stream reactor were operated intermittently. Mass balance analysis illustrated that both denitrification and EBPR performance have been enhanced in S2EBPR configuration through diverting primary effluent to anoxic zone and producing additional carbon (~40%) via fermentation in side-stream reactor. Microbial characterization showed that there was no significant difference in the relative abundances of Ca. Accumulibacter (~5.9%) and Tetrasphaera (~16%) putative polyphosphate-accumulating organisms (PAOs) between the two configurations. However, lower relative abundance of known GAOs was observed in S2EBPR configuration (1.1%) than the conventional one (2.7%). A relatively higher PAO activity and increased degree of dependence on glycolysis pathway than TCA cycle was observed in S2EBPR configuration using P release and uptake batch test. Adequate anaerobic solid retention time (SRT) and conditions that generate continuous and slow feeding/production of volatile fatty acid (VFA) with higher composition percentage of propionate in the side-stream reactor of S2EBPR process likely provide a competitive advantage for PAOs over GAOs.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

1390

Views

761

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated