Preprint
Article

Interlaminar Shear Behavior of Laminated Carbon Fiber Reinforced Plastic from Microscale Strain Distributions Measured by Sampling Moire Technique

Submitted:

03 August 2018

Posted:

03 August 2018

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
The interlaminar shear behavior of a [±45°] laminated carbon fiber reinforced plastic (CFRP) specimen was investigated utilizing microscale strain mapping in a wide field of view. A three-point bending device was developed under a laser scanning microscope, and the full-field strain distributions including normal, shear and principal strains of CFRP in a three-point bending test were measured using a developed sampling Moire technique. The microscale shear strain concentrations at interfaces between each two adjacent layers were successfully detected and found to be positive-negative alternately distributed before damage occurrence. The 45° layers slipped to the right relative to the -45° layers, visualized from the revised Moire phases and shear strain distributions of the angle-ply CFRP under different loads. The absolute values of the shear strain at interfaces gradually rose with the increase of the bending load, and the sudden decrease of the shear strain peak value implied the occurrence of interlaminar damage. The evolution of the shear strain concentrations is useful in the quantitative evaluation of the potential interlaminar shear failure.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

357

Views

283

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated