Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Improving Spinnability of Hyper-coal Derived Spinnable Pitch through the Hydrogenation with 1, 2, 3, 4-tetrahydroquinoline

Version 1 : Received: 20 July 2018 / Approved: 25 July 2018 / Online: 25 July 2018 (10:19:51 CEST)

A peer-reviewed article of this Preprint also exists.

Yang, J.; Wu, W.; Zhang, X.; Shi, K.; Li, X.; Yoon, S.-H. Improving Spinnability of Hyper-Coal Derived Spinnable Pitch through the Hydrogenation with 1,2,3,4-Tetrahydroquinoline. C 2018, 4, 46. Yang, J.; Wu, W.; Zhang, X.; Shi, K.; Li, X.; Yoon, S.-H. Improving Spinnability of Hyper-Coal Derived Spinnable Pitch through the Hydrogenation with 1,2,3,4-Tetrahydroquinoline. C 2018, 4, 46.

Abstract

The proper hydrogenation of Hyper-coal (HPC) using 1, 2, 3, 4-tetrahydroquinoline (THQ) was able to decrease the oxygen content and adjust the molecular structure of HPC for preparing the spinnable pitch with high softening point (SP). The spinnable pitch prepared from the THQ-soluble (QS) fraction of HPC as a precursor consisted more naphthenic carbon groups than that prepared from the 1-methylnaphthalene (1-MN) soluble (MNS) fraction of HPC. The HPC-QS derived pitch showed excellent spinnability even the SP of 260°C, and the tensile strength of the resultant carbon fiber was up to 1350 MPa with a diameter around 8 µm by only heat treatment at 800°C for 5 min.

Keywords

hyper-coal, hydrogenation, spinnable pitch, carbon fiber

Subject

Chemistry and Materials Science, Materials Science and Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.