Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

PEDOT:PSS-Based Temperature-Detection Thread for Wearable Devices

Version 1 : Received: 24 July 2018 / Approved: 24 July 2018 / Online: 24 July 2018 (08:28:17 CEST)

A peer-reviewed article of this Preprint also exists.

Lee, J.-W.; Han, D.-C.; Shin, H.-J.; Yeom, S.-H.; Ju, B.-K.; Lee, W. PEDOT:PSS-Based Temperature-Detection Thread for Wearable Devices. Sensors 2018, 18, 2996. Lee, J.-W.; Han, D.-C.; Shin, H.-J.; Yeom, S.-H.; Ju, B.-K.; Lee, W. PEDOT:PSS-Based Temperature-Detection Thread for Wearable Devices. Sensors 2018, 18, 2996.

Journal reference: Sensors 2018, 18, 2996
DOI: 10.3390/s18092996

Abstract

In this research, we developed a wearable temperature-sensing element by dip dyeing threads in poly (3, 4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) (p-type conducting polymer) solution. The PEDOT:PSS was used to dye the textile and it exhibited negative temperature coefficient characteristics in which the resistance decreases as the temperature increases. The fabricated temperature-detection thread achieved a sensitivity of 167.1 W/°C with 99.8% linearity in the temperature range of -50 to 80 °C. We anticipate that temperature sensors that apply our technology will be made as stitch- or textile-type for wearable devices, and they will be widely adopted for different applications such as in fitness, leisure, healthcare, medical treatment, infotainment, industry, and military applications, among others.

Keywords

temperature-detection; thread; PEDOT:PSS; wearable devices

Subject

PHYSICAL SCIENCES, Applied Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.

We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.