Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Nanocrystals of Poorly Soluble Drugs: Drug Bioavailability and Physicochemical Stability

Version 1 : Received: 13 July 2018 / Approved: 13 July 2018 / Online: 13 July 2018 (11:16:15 CEST)

How to cite: Gigliobianco, M.R.; Casadidio, C.; Censi, R.; Di Martino, P. Nanocrystals of Poorly Soluble Drugs: Drug Bioavailability and Physicochemical Stability. Preprints 2018, 2018070233. https://doi.org/10.20944/preprints201807.0233.v1 Gigliobianco, M.R.; Casadidio, C.; Censi, R.; Di Martino, P. Nanocrystals of Poorly Soluble Drugs: Drug Bioavailability and Physicochemical Stability. Preprints 2018, 2018070233. https://doi.org/10.20944/preprints201807.0233.v1

Abstract

Many approaches have been developed over time to counter the bioavailability limitations of poorly soluble drugs. With advances in nanotechnology in recent decades, science and industry have been approaching this issue through the formulation of drugs as nanocrystals, which consist of pure drugs and a minimum of surface active agents required for stabilization. They are carrier-free submicron colloidal drug delivery systems with a mean particle size in the nanometer range, typically between 10 and 800 nm. By reducing particle size to nanoscale, the particle surface area available for the molecule dissolution in the direction of dissolution medium is increased, and thus bioavailability is enhanced. This approach has proven successful, as demonstrated by the number of such drug products on the market. R&D and industry have offered many technological solutions to reduce the particle size to nanoscale, and also devised solutions for the handling of particle of nanodimensions, such as methods to accurately measure nanoparticle size and techniques to prevent physicochemical and stability related problems, such as aggregation. The present work provides an overview of the more recent achievements in improving the bioavailability of poorly soluble drugs according to their administration route, and describes the methods developed to overcome physicochemical and stability related problems.

Keywords

nanocrystals; poorly soluble drug; nanotechnology; stability

Subject

Chemistry and Materials Science, Physical Chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.