Preprint
Article

This version is not peer-reviewed.

Tailored Biodegradable and Electroactive Poly(hydroxybutyrate-co-hydroxyvalerate) Based Morphologies for Tissue Engineering Applications

A peer-reviewed article of this preprint also exists.

Submitted:

30 June 2018

Posted:

03 July 2018

You are already at the latest version

Abstract
Polymer-based piezoelectric biomaterials have already proven their relevance for tissue engineering applications. Further, the morphology of the scaffolds plays also an important role in cell proliferation and differentiation. The present work reports on poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), a biocompatible, biodegradable and piezoelectric biopolymer that has been processed in different morphologies, including films, fibres, microspheres and 3D scaffolds. Further, the corresponding magnetically active PHBV-based composites were also produced. The effect of the morphology on physico-chemical, thermal, magnetic and mechanical properties of pristine and composites samples was evaluated, as well as their cytotoxicity. It was observed that the morphology does not strongly affect the properties of the pristine samples but the introduction of cobalt ferrites induces changes in the degree of crystallinity that could affect the applicability of prepared biomaterials. Young modulus is dependent of the morphology and also increases with the addition of cobalt ferrites. Both, pristine and PHBV/cobalt ferrite composite samples are no cytotoxic, indicating their suitability for tissue engineering applications.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated