Preprint
Article

Synthesis of nitrogen-rich polymers by click polymerization reaction and gas sorption property

This version is not peer-reviewed.

Submitted:

16 June 2018

Posted:

19 June 2018

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Microporous organic polymers (MOPs) are promising materials for gas sorption because of the intrinsic and permanent porosity, designable framework and low density. The introduction of nitrogen-rich building block in MOPs will greatly enhance the gas sorption capacity. Here, we report the synthesis of MOPs from the 2,4,6-tris(4-ethynylphenyl)-1,3,5-triazine unit and aromatic azides linkers via click polymerization reaction. FTIR and solid state 13C CP-MAS NMR confirm the formation of the polymers. CMOP-1 and CMOP-2 exhibit microporous networks with BET surface area of 431 and 406 m2 g-1 and narrow pore size distribution under 1.2 nm. Gas sorption isotherms including CO2 and H2 were measured. CMOP-1 stores superior CO2 level of 8.2 wt% (1.88 mmol g-1) at 273 K/1.0 bar and H2 uptake up to 0.6 wt% at 77 K/1.0 bar, while CMOP-2 with smaller surface area shows lower CO2 adsorption capacity of 7.3 wt% (1.66 mmol g-1) and H2 uptake (0.5 wt%). In addition, I2 vapor adsorption was tested at 353 K. CMOP-1 shows higher gravimetric load of 160 wt%. Despite of the moderate surface area, the CMOPs display excellent sorption ability for CO2 and I2 due to the nitrogen-rich content in the polymers.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

497

Views

315

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated