Preprint
Article

SpArcFiRe: Enhancing Spiral Galaxy Recognition using Arm Analysis and Random Forests

This version is not peer-reviewed.

Submitted:

19 October 2018

Posted:

22 October 2018

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Automated machine classifications of galaxies are necessary because the size of upcoming surveys will overwhelm human volunteers. We improve upon existing machine classification methods by adding the output of SpArcFiRe to the inputs of a machine learning model. We use the human classifications from Galaxy Zoo 1 (GZ1) to train a random forest of decision trees to reproduce the human vote distributions of the Spiral class. We prefer the random forest model over other black box models like neural networks because it allows us to trace post hoc the precise reasoning behind the classification of each galaxy. We find that, across a sample of 470,000 Sloan galaxies that are large enough that details could be seen if they were there, the combination of SpArcFiRe outputs with existing SDSS features provides a better machine classification than either one alone on comparison to Galaxy Zoo 1. We suggest that adding SpArcFiRe outputs as features to any machine learning algorithm will likely improve its performance.
Keywords: 
galaxy morphology, machine learning; data analysis; object classification
Subject: 
Physical Sciences  -   Astronomy and Astrophysics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

529

Views

526

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated