Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Antineutrino Star Model of the Big Bang and Dark Energy

Version 1 : Received: 7 June 2018 / Approved: 12 June 2018 / Online: 12 June 2018 (08:43:45 CEST)
Version 2 : Received: 27 October 2019 / Approved: 28 October 2019 / Online: 28 October 2019 (06:52:16 CET)

A peer-reviewed article of this Preprint also exists.

T.F. Neiser, Fermi Degenerate Antineutrino Star Model of Dark Energy, Adv. Astron. 2020, 8654307 (2020) T.F. Neiser, Fermi Degenerate Antineutrino Star Model of Dark Energy, Adv. Astron. 2020, 8654307 (2020)


A new model of cosmology is proposed, where the state of high energy density commonly associated with the big bang is generated by the collapse of an antineutrino star that has exceeded its Chandrasekhar limit. To allow the first neutrino stars and antineutrino stars to form naturally from an initial quantum vacuum state, matter and antimatter are assumed to gravitationally repel. In this scenario, a degenerate antineutrino star in effective hydrostatic equilibrium has a density that is similar to the dark energy density of the ΛCDM model. When viewed from the core, such a star could today accelerate matter radially and emit the isothermal cosmic microwave background radiation, which addresses the horizon and flatness problems. This model and the ΛCDM model are in similar quantitative agreement with supernova distance measurements. The presented model is also in qualitative agreement with observed large-scale anisotropy and inhomogeneity, which distinguishes it from the ΛCDM model.


cosmology: theory; gravitation; early universe; dark energy; large-scale structure of universe; cosmic background radiation; neutrinos


Physical Sciences, Particle and Field Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0

Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.