Preprint Article Version 1 This version is not peer-reviewed

MIL-100(Al) Gels as an Excellent Platform Loaded with Doxorubicin Hydrochloride for pH-Triggered Drug Release and Anticancer Effect

Version 1 : Received: 26 May 2018 / Approved: 30 May 2018 / Online: 30 May 2018 (05:01:21 CEST)

A peer-reviewed article of this Preprint also exists.

Feng, Y.; Wang, C.; Ke, F.; Zang, J.; Zhu, J. MIL-100(Al) Gels as an Excellent Platform Loaded with Doxorubicin Hydrochloride for pH-Triggered Drug Release and Anticancer Effect. Nanomaterials 2018, 8, 446. Feng, Y.; Wang, C.; Ke, F.; Zang, J.; Zhu, J. MIL-100(Al) Gels as an Excellent Platform Loaded with Doxorubicin Hydrochloride for pH-Triggered Drug Release and Anticancer Effect. Nanomaterials 2018, 8, 446.

Journal reference: Nanomaterials 2018, 8, 446
DOI: 10.3390/nano8060446

Abstract

Slow and controlled release systems for drugs, have attracted increasing interest recently. A highly efficient metal-organic gels (MOGs) drug delivery carrier, i.e., MIL-100(Al) gels, has been fabricated by a facile, low cost and environment friendly one-pot process. The unique structure of MIL-100(Al) gels leads to a high loading efficiency (620 mg/g) towards doxorubicin hydrochloride (DOX) as a kind of anticancer drugs. DOX-loaded MOGs exhibited high stability under physiological conditions and sustained release capacity of DOX for up to 3 days (under acidic environments). They further showed sustained drug release behavior and excellent antitumor effects in in vitro experiments on HeLa cells, in contrast with the extremely low biotoxicity of MOGs. Our work provides a promising way for the anticancer therapy, by utilizing this MOGs-based drug delivery system, as an efficient and safe vehicle.

Subject Areas

metal-organic gels; doxorubicin loading and release; pH-responsiveness; anticancer effect

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.