Preprint
Review

This version is not peer-reviewed.

Glial Bridge Ecology: Cellular Mechanisms that Drive Spinal Cord Regeneration in Zebrafish

A peer-reviewed article of this preprint also exists.

Submitted:

22 May 2018

Posted:

22 May 2018

You are already at the latest version

Abstract
Zebrafish have been found to be the premier model organism in biological and biomedical research, specifically offering many advantages in developmental biology and genetics. This unique aquatic species has been found to have the capacity to regenerate their spinal cord after injury. However, the complete molecular and cellular mechanisms behind glial bridge formation in the central and peripheral nervous systems upon glial cell injury remains unclear. This review paper focuses on the molecular mechanisms and cellular processes that underlie spinal cord regeneration in four initial phases: proliferation and initial migration; migration and differentiation; glial bridge formation; and remodeling. We propose that within these four phases the cellular mechanisms that underlie spinal cord regeneration each express a terminating signal that aborts one step of the process and initiates the next. Specifically, future studies would be devoted to investigate transmitting signals in the spinal cord injury micro-environment in hope to contribute to the understanding of underlying cellular mechanisms by connecting each process of spinal cord regeneration in zebrafish.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated