Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Gel Dosimetry with Radio-Fluorogenic Coumarin

Version 1 : Received: 8 May 2018 / Approved: 11 May 2018 / Online: 11 May 2018 (05:29:00 CEST)

A peer-reviewed article of this Preprint also exists.

Sandwall, P.A.; Bastow, B.P.; Spitz, H.B.; Elson, H.R.; Lamba, M.; Connick, W.B.; Fenichel, H. Radio-Fluorogenic Gel Dosimetry with Coumarin. Bioengineering 2018, 5, 53. Sandwall, P.A.; Bastow, B.P.; Spitz, H.B.; Elson, H.R.; Lamba, M.; Connick, W.B.; Fenichel, H. Radio-Fluorogenic Gel Dosimetry with Coumarin. Bioengineering 2018, 5, 53.

Abstract

In radiotherapy, accurate deposition of energy to the targeted volume is vital to ensure effective treatment. Gel dosimeters are attractive detection systems, as tissue substitutes with potential to yield three-dimensional dose distributions. Radio-fluorogenesis is creation fluorescent chemical products in response to energy deposition from high-energy radiation. This report shares studies of a radio-fluorogenic gel dosimetry system, gelatin with coumarin-3-carboxlyic acid (C3CA), for the quantification of imparted energy. Aqueous solutions exposed to ionizing radiation result in the production of hydroxyl free radicals through water radiolysis. Interactions between hydroxyl free radicals and coumarin-3-carboxylic acid produce a fluorescent product. 7-hydroxy-coumarin-3-carboxylic acid has a blue (445 nm) emission, following UV to near UV (365–405 nm) excitation. Effects of C3CA concentration and pH buffers were investigated for this system. The response of the system was explored with respect to strength, type, and exposure rate of high-energy radiation. Results show a linear dose response relationship with a dose-rate dependency and no energy or type dependencies. This report supports the utility of gelatin-C3CA for phantom studies of radio-fluorogenic processes.

Keywords

gel dosimetry; radiation dosimetry; radio-fluorogenic gel, luminescent dosimetry

Subject

Physical Sciences, Radiation and Radiography

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.