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 8 

Abstract: In radiotherapy, accurate deposition of energy to the targeted volume is vital to ensure 9 
effective treatment.  Gel dosimeters are attractive detection systems, as tissue substitutes with 10 
potential to yield three-dimensional dose distributions. Radio-fluorogenesis is creation fluorescent 11 
chemical products in response to energy deposition from high-energy radiation. This report shares 12 
studies of a radio-fluorogenic gel dosimetry system, gelatin with coumarin-3-carboxlyic acid 13 
(C3CA), for the quantification of imparted energy. Aqueous solutions exposed to ionizing radiation 14 
result in the production of hydroxyl free radicals through water radiolysis. Interactions between 15 
hydroxyl free radicals and coumarin-3-carboxylic acid produce a fluorescent product. 16 
7-hydroxy-coumarin-3-carboxylic acid has a blue (445 nm) emission, following UV to near UV 17 
(365–405 nm) excitation. Effects of C3CA concentration and pH buffers were investigated for this 18 
system. The response of the system was explored with respect to strength, type, and exposure rate 19 
of high-energy radiation. Results show a linear dose response relationship with a dose-rate 20 
dependency and no energy or type dependencies. This report supports the utility of gelatin-C3CA 21 
for phantom studies of radio-fluorogenic processes. 22 
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1. Introduction  25 
Advancements in radiation therapy technology have supported study of tissue-equivalent gels 26 

containing active chemical sensors for the measurement of absorbed dose of radiation. Gel 27 
dosimeters have radiological properties similar to biological tissue and are suitable substitutes with 28 
the potential to resolve three-dimensional dose distributions. The development of gel dosimeters 29 
was dormant for many years, but has recently been developing at a rapid pace. The first reported use 30 
of a gel dosimeter was in 1950 with the colorimetric dye methylene blue [1]. Other early 31 
investigators explored chloral hydrate and trichloroethylene in agar [2]. Gelatin with ferricyanide, 32 
Fricke-type, gel dosimeters were first studied using colorimetric methods, and later magnetic 33 
resonance (MR) imaging [3-5]. Further developments introduced polymer and leuco-dye systems 34 
[6-7]. Recently, a radio-fluorogenic polymer system has been introduced [8]. Each of the current gel 35 
dosimeters have their own limitations such as rapid diffusion of chemical products with Fricke-type, 36 
toxicicty of with polymer systems, intricate fabrication methods with leuco-dyes, and the 37 
water-insolubility of radio-fluorogenic polymers [9]. The hunt for the ideal sensor element and gel 38 
substrate is ongoing.  39 

Two of the most common gel substrates are agarose and gelatin. Gelatin is derived from bovine 40 
or porcine collagen; primary element of skin, bone, and connective tissue. Agarose is a 41 
polysaccharide isolated from agar with highest gelling potential; agar is derived from seaweed. 42 
Gelatin and agarose are both capable of creating hydrogels with low percentages of gelling agent. 43 
However, agarose is opaque and induces light scattering, while gelatin is relatively translucent. The 44 
opacity of agar makes it less than ideal for optical analysis.32 Clarity and transparency of gelatin is 45 
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strongly dependent on raw material history, purity, and preparation. Commercial gelatin consists of 46 
tropocollagen rods in the order of 300 nm in length with 1.5 nm diameter [10]. Raw material is 47 
processed with acid or base solutions yielding “Type A” (hydrogen chloride) or “Type B” (sodium 48 
hydroxide). Type A is denser than type B with a greater intrinsic viscosity [11]. Gelation speed also 49 
affects rigidity with structure a function of formation temperature, slow gelatin yields increased 50 
organization and orientation of chain elements with greater lateral bonding, this results in the 51 
formation of fine well-ordered lattices [12]. Additionally, gelation is not susceptible to ionic effects 52 
[10]. Derived from biological tissue with well understood mechanisms of gelation, gelatin is an 53 
attractive substrate for exploration of optically active sensors. 54 

Radio-fluorogenic sensors are chemical elements that allow for dosimetry, quantification of 55 
energy deposition from of ionizing radiation, through measurement of molecular fluorescence. 56 
Fluorescent detection methods are particularly promising due to their ability to form selective 57 
high-resolution images. Initially reported by Day and Stein in 1949, fluorescence spectroscopy can be 58 
used to determine absorbed dose in aqueous solutions of aromatic compounds [13-15]. Ionizing 59 
radiation initiates radiolysis of water, yielding hydroxyl free radicals that hydroxylate aromatic 60 
compounds via electrophilic substitution. Numerous aromatic compounds are recognized as 61 
radio-fluorogenic, with hydroxylation producing fluorescent products. The first fluorescent sensor 62 
investigated for radiation dosimetry was aqueous benzoic acid [15]. Other potential sensors are 63 
terephthalic, trimesic, and pyromellitic acid [16-18]. Each improved the yield of fluorescent products 64 
by restraining positions for substitution. However, each of those compounds possesses excitation 65 
wavelengths unsuitable for a gel substrate. Rayleigh scattering is wavelength dependent, 66 
proportional to 1/λ4, resulting in rapid reduction of transmission for shorter wavelengths of light. 67 
Organic gels are naturally turbid due to their macromolecular nature, thus it is preferable to use 68 
longer excitation wavelengths with greater potential for penetration. Fluorescence of aromatic 69 
compounds is due to their conjugated system of alternating single and double-bonds; overlapping 70 
pi-orbitals allow for delocalization of electrons. Larger conjugated systems require less energy for 71 
excitation [19]. Selection of a multi-cyclic radio-fluorogenic sensor would provide a more attractive 72 
fluorescent product; ideally with excitation from visible light. Multi-cyclic coumarin-3-carboxylic 73 
acid (C3CA) is a sensor candidate.  74 

Aqueous C3CA has been identified as chemical dosimeter for application to radiotherapy with 75 
favorable traits including linear dose response, reproducibility, and long-term stability [20]. The 76 
radio-fluorogenic mechanism of C3CA has been studied within aqueous solution [21]. Positive 77 
features of C3CA include high solubility in aqueous solutions, simple organic composition, and 78 
favorable excitation and emission spectra. C3CA reacts with hydroxyl radicals to yield the 79 
fluorescent product, 7-hydroxycoumarin-3-carboxylic acid (7HOC3CA), Figure 1. 80 

 81 

 82 
Figure 1. Hydroxyl radicals react with C3CA to yield 7HOC3CA through hydrogen abstraction, 83 
transfer, and substitution. 84 

The present investigation explored C3CA in gelatin as a potential radio-fluorogenic detector. 85 
Concentration effects of C3CA were studied and the influence of pH buffers was investigated with 86 
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respect to relative fluorescent yield. Ionizing radiation response was examined subject to dose, rate, 87 
energy, and type for megavoltage electron and photon energies. 88 

2. Materials and Methods  89 
Solutions were readied with water from EASYpure water purification system (Barnstead 90 

International). Reagents were procured from Fisher Scientific (Baltimore, MD): 98% C3CA, 91 
C10H6O4 (Acros Organics, Baltimore, MD) and 99% 7HOC3CA, C10H6O5, MW 206.16 (Infodine 92 
Chemical Company; Hillsborough, NJ), sodium bicarbonate, sodium hydroxide, phosphate buffered 93 
saline, and food grade porcine type A gelatin (bloom strength 260, pH 5, and viscosity 40). Aliquots 94 
were separated, irradiated, and analyzed. Samples were stored at low temperature (5° C) to inhibit 95 
microbial growth.  96 

To allow for dispersion, gelatin was ‘wet,’ placed in a beaker to soak with half the total volume 97 
of water for 20 minutes. C3CA was brought into solution by boiling a small volume in a separate 98 
beaker. After sufficient ‘wetting’, aqueous C3CA solution was added with the remaining portion of 99 
water and temperature of gel solution raised to 35° C; care was taken to ensure the temperature 100 
remained below 40° C to prevent denaturation. Gel was maintained at 35° C for 90 minutes, or until 101 
optically clear and free of visible colloidal structures. The solution was then removed from heat and 102 
pipetted into poly-methyl-methacrylate (PMMA) cuvettes. Gels were left to cool overnight at 103 
ambient temperature. For initial pH buffer studies, 7% gelatin solutions were made with 7HOC3CA 104 
to mimic the radio-fluorogenic product. Sodium bicarbonate/hydroxide and phosphate buffered 105 
saline (PBS) solutions were prepared with 0.9 mM C3CA and 0.1 mM 7HOC3CA. For concentration 106 
and dose response studies, 1 mM, 5 mM, 10 mM, and 20 mM C3CA solutions were prepared with 107 
the sodium bicarbonate/hydroxide buffer.  108 

Irradiations were conducted with a C-series high-energy medical linear accelerator (linac) 109 
(Varian Medical Systems; Palo Alto, CA), with two megavoltage (MV) photon and five electron 110 
energies; 6 and 23 and 6, 9, 12, 15, and 20 MeV. Irradiations were conducted with a polystyrene 111 
phantom containing a void for 4 cuvettes; the phantom was designed expressly to provide geometry 112 
favorable for establishment of electronic equilibrium. A computed tomography (CT) scan was 113 
carried out on the phantom, images were imported into Eclipse treatment planning system (Varian 114 
Medical Systems; Palo Alto, CA), and nominal dose calculated. 115 

Instrumental analysis was conducted with a Cary Eclipse fluorescence spectrophotometer 116 
(Varian, Inc.; Pal Alto, California). Excitation and emission slit widths were set to 5 nm, emission 117 
scans were performed and peak emission values recorded and plotted. The dose response curve was 118 
created by plotting intensity of 445nm emission versus nominal dose. 119 

3. Results 120 

3.1. pH Response 121 
The influence of pH buffers on fluorescent response was examined. Several solutions yielded 122 

various pH’s; deionized water (pH 6.0), phosphate buffered saline (pH 7.4), and sodium hydroxide 123 
with sodium bicarbonate (pH 10). Results show positive correlation between pH and quantum yield. 124 
A spectral shift of the excitation maxima was also demonstrated. Specifically, peak excitation shifted 125 
from 365nm in normal (pH 7) solution to 405 nm in basic (pH = 10) solution, Figure 2. 126 
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 127 

Figure 2. Spectral curves of excitation and emission for solutions of 7% gelatin with 0.9mM C3CA 128 
and 0.1mM 7HOC3CA.  129 

3.2. C3CA Concentration 130 
With sodium hydroxide with sodium bicarbonate solutions, varying the concentration of C3CA 131 

revealed a stronger response with concentrations 5 mM and greater, Figure 3. The peak normalized 132 
response, fluorescent intensity divided by dose, produced a decreasing exponential curve, Figure 4.  133 

 134 

 135 

Figure 3. Nominal dose plotted against intensity for concentrations of C3CA in 7% gelatin. Error bars 136 
represent relative 5% error. 137 
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 138 

Figure 4. Nominal dose plotted versus normalized response. Error bars represent relative 5% error. 139 

3.3. Dose Response 140 
Dose response was studied with ionizing radiation with respect to type, rate, and energy. 141 

Relative response was measured with respect to 445nm emissions and plotted against nominal dose, 142 
Figure 5. Repeated measures, using four samples for each data point, demonstrated relative error 143 
less than 1%. A linear response was observed in the range investigated (R > 0.99), independent of 144 
type (photon or electron) and energy (9 MeV, 6 MV, and 23 MV), Figure 6. A strong negative 145 
correlation (R > 0.99) with dose rate was observed; the intensity of normalized fluorescent response 146 
decreased with increasing dose rate, Figure 7. Using a definition of three times the standard 147 
deviation of the background, the minimum detectable amount (MDA) was extrapolated from 9MeV 148 
electron data and estimated to be 1.5Gy, Figure 8. 149 

 150 
Figure 5. Nominal dose plotted against intensity, demonstrating a linear response (R>.99). Linear 151 
equations inlaid, error bars represent 5% relative error. 152 
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 153 
Figure 6. Normalized response plotted against nominal dose for 23 MV, 6 MV, and 9 MeV beams,  154 
error bars represent 5% relative error. 155 

 156 
Figure 7. Plot of 9 MeV dose response plotted with extrapolated MDA. 157 

4. Discussion 158 
The basic solutions (pH 10) were observed to double emission intensity and shift the peak 159 

excitation wavelength from 365 nm to 405 nm. Transition between excited and ground states, the 160 
energy gap, is known to be influenced by the micro-environment through molecular motion, 161 
collision, rotational and translational diffusion, and formation of complexes. Smaller quantum yields 162 
are observed with large energy gaps due to availability of alternative relaxation pathways. The 163 
observed increase in quantum yield is consistent with previous studies in aqueous solution; 164 
however, greater than previously observed (385 nm) [22]. The increased spectral shift may be due to 165 
interactions with gelatin, additional study could clarify these effects. 166 

The dose response was notably more pronounced for concentrations of C3CA above 5 mM. The 167 
normalized response curves of various concentrations of C3CA suggest saturation, diminishing 168 
population of radio-fluorogenic reactants in the dose range studied. Future work investigating 169 
absolute yields and a larger range of doses would be beneficial. 170 

Normalized data demonstrate an independent linear response with respect to dose, energy, and 171 
type of ionizing radiation (electron and photon). With respect to type, an independent response is 172 
expected since photon dose deposition is predominately by delta rays, secondary electrons. A dose 173 
rate dependency was observed, consistent with other findings [20]. Previously suggested to be due 174 
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to metallic impurities in C3CA and alleviated by successive distillations. The MDA was estimated to 175 
be 1.5 Gy, this value should be determined rigorously, by study of an expanded dose range. 176 
 177 

5. Conclusions 178 
Optical imaging of biomarkers is an active area of study with C3CA a recognized radiation 179 

activated sensor for fluorescent imaging [18]. Investigators have explored the use of coumarin 180 
attached to peptide ligands, designed for DNA binding, with potential for assessment of radiological 181 
response [23]. Other work is currently studying the application of fluorescent labels for radiometric 182 
assay [24, 25]. Advances in the fabrication of gelatin based phantom materials with 3D printability 183 
make further study particularly attractive [26]. Further study radio-fluorescent sensors in a gelatin 184 
matrix would help advance these prospective in vivo applications. 185 

The potential of C3CA in gelatin for determination of spatial dose distributions has been 186 
demonstrated in a separate report [27]. The use of planar laser induced fluorescence (PLIF) has been 187 
shown as a method to yield high-resolution three-dimensional images [28]. This method of image 188 
collection and analysis has been recognized and is currently being explored with polymer based 189 
radio-fluorogenic gel [29]. However, it is the author’s belief that the greatest depth of penetration 190 
and finest imaging resolution will be obtained by applying methods of two-photon excitation 191 
microscopy. 192 
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