Preprint Article Version 1 This version is not peer-reviewed

Beneficial Impact and Molecular Mechanism of Bacillus Coagulans on Piglets Intestine

Version 1 : Received: 3 May 2018 / Approved: 4 May 2018 / Online: 4 May 2018 (05:31:44 CEST)

A peer-reviewed article of this Preprint also exists.

Wu, T.; Zhang, Y.; Lv, Y.; Li, P.; Yi, D.; Wang, L.; Zhao, D.; Chen, H.; Gong, J.; Hou, Y. Beneficial Impact and Molecular Mechanism of Bacillus coagulans on Piglets’ Intestine. Int. J. Mol. Sci. 2018, 19, 2084. Wu, T.; Zhang, Y.; Lv, Y.; Li, P.; Yi, D.; Wang, L.; Zhao, D.; Chen, H.; Gong, J.; Hou, Y. Beneficial Impact and Molecular Mechanism of Bacillus coagulans on Piglets’ Intestine. Int. J. Mol. Sci. 2018, 19, 2084.

Journal reference: Int. J. Mol. Sci. 2018, 19, 2084
DOI: 10.3390/ijms19072084

Abstract

This research was to investigate beneficial impact and molecular mechanism of B. coagulans on piglets intestine. Twenty-four 21 days old weaned piglets were allotted to three treatments: control group (basal diet), B6 group (basal diet + 2×106 CFU/g B. coagulans), B7 group (basal diet + 2×107 CFU/g B. coagulans). The results showed that compared with control group, B6 and B7 group significantly decreased diarrhea rate and the concent of CHOL, GGT and DAO in plasma; decreased villus height and increase crypt depth in jejunum and ileum; increased the activities of SOD and CAT and decreased the concent of MDA and H2O2 in intestine. These data suggested that supplementing B. coagulans had beneficial impacts on promoting nutrients metabolism, maintaining intestinal integrity and alleviating oxidative stress and diarrhea. Futher research of molecular mechanisms showed that, these beneficial impacts were regulated by changing expression levels of related proteins (including HSP70, Caspase-3, Bax, Villin and Occludin), and genes (including RPL4, IFN-α, IFN-β, IFN-γ, MX1, MX2, OAS1, IL-1β, IL-4, CXCL-9, CCL-2, AQP3, SGLT-1, LPL, INSR and b0,+AT), and altering community composition of gut microbiota (particularly family Clostridiaceae, Enterobacteriaceae, and Veillonellaceae and genus Prevotella, Turicibacter, and Lactobacillus).

Subject Areas

Bacillus coagulans; intestinal function; gut microbiota; weaned piglet

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.