Preprint Article Version 1 This version is not peer-reviewed

Exploring Basic Components Effect on the Catalytic Efficiency of Chevron-Phillips Catalyst in Ethylene Trimerization

Version 1 : Received: 26 April 2018 / Approved: 26 April 2018 / Online: 26 April 2018 (16:55:12 CEST)

A peer-reviewed article of this Preprint also exists.

Naji-Rad, E.; Gimferrer, M.; Bahri-Laleh, N.; Nekoomanesh-Haghighi, M.; Jamjah, R.; Poater, A. Exploring Basic Components Effect on the Catalytic Efficiency of Chevron-Phillips Catalyst in Ethylene Trimerization. Catalysts 2018, 8, 224. Naji-Rad, E.; Gimferrer, M.; Bahri-Laleh, N.; Nekoomanesh-Haghighi, M.; Jamjah, R.; Poater, A. Exploring Basic Components Effect on the Catalytic Efficiency of Chevron-Phillips Catalyst in Ethylene Trimerization. Catalysts 2018, 8, 224.

Journal reference: Catalysts 2018, 8, 224
DOI: 10.3390/catal8060224

Abstract

In the present work, effect of basic components on the energy pathway of ethylene oligomerization by landmark Chevron-Phillips catalyst has been explored in detail using density functional theory (DFT). Studied factors were chosen considering the main components of Chevron-Phillips catalyst, i.e. ligand, cocatalyst and halocarbon compounds, comprising i) the type of alkyl substituents in pyrrole ligand as methyl, iso-propyl, tert-butyl, and phenyl, as well as the simple hydrogen, and the electronwithdrawing fluoro and trifluoromethyl; ii) the number of Cl atoms in Al-compound (as AlMe2Cl, AlMeCl2 and AlCl3) which indicates halocarbon amount and iii) cocatalyst type as alkylboron, alkylaluminium, or alkylgallium. Besides main ingredients, solvent effect, from toluene or methylcyclohexane, on oligomerization pathway was explored as well. In this regard, the full catalytic cycles for the main product (1-hexene) formation as well as side reactions, i.e. 1-butene release and chromacyclononane formation, were calculated on the basis of the metallacycle based mechanism. Based on results, a modification on the Chevron-Phillips catalyst system, to reach higher 1-hexene selectivity and activity, is suggested.

Subject Areas

Chevron-Phillips; chromium; trimerization; polymerization; reaction pathway

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.